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When deciding which ad hoc team to join, agents are often required to consider 

rewards from accomplishing tasks as well as potential benefits from learning when 

working with others, when solving tasks. We argue that, in order to decide when to learn 

or when to solve task, agents have to consider the existing agents’ capabilities and tasks 

available in the environment, and thus agents have to consider agent and task openness—

the rate of new, previously unknown agents (and tasks) that are introduced into the 

environment. We further assume that agents evolve their capabilities intrinsically through 

learning by observation or learning by doing when working in a team. Thus, an agent will 

need to consider which task to do or which team to join would provide the best situation 

for such learning to occur. In this thesis, we develop an auction-based multiagent 

simulation framework, a mechanism to simulate openness in our environment, and 

conduct comprehensive experiments to investigate the impact of agent and task openness. 

We propose several agent task selection strategies to leverage the environmental 

openness. Furthermore, we present a multiagent solution for agent-based collaborative 

human task assignment when finding suitable tasks for users in complex environments is 

made especially challenging by agent openness and task openness. Using an auction-

based protocol to fairly assign tasks, software agents model uncertainty in the outcomes 
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of bids caused by openness, then acquire tasks for people that maximize both the user’s 

utility gain and learning opportunities for human users (who improve their abilities to 

accomplish future tasks through learning by experience and by observing more capable 

humans).  Experimental results demonstrate the effects of agent and task openness on 

collaborative task assignment, the benefits of reasoning about openness, and the value of 

non-myopically choosing tasks to help people improve their abilities for uncertain future 

tasks. 
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Chapter 1: Introduction 

1.1 Problem 

Intelligent agents are capable of sensing the environment, making autonomous 

decisions which in turn influence the environment. A multiagent system consists of such 

agents that work together cooperatively or competitively towards a common goal. 

Multiagent systems provide a strong platform for examining coalition formation and 

member interaction.  Agents can mirror the operation of people in actual groups.  

Modeling how agents form coalitions within the broader group has been an active area in 

multiagent systems (Caillou, Aknine, & Pinson, 2002; Onn Shehory & Kraus, 1998; Soh 

& Tsatsoulis, 2002). However, the most relevant subarea concerns modeling cooperative 

multiagent systems where agents learn to coordinate with their cooperative team 

members without having any prior collaboration experience with them (Stone, Kaminka, 

& Rosenschein, 2010b), has not been extensively studied. In such a setting, different 

agents may have different capabilities and tasks may need varieties of capabilities to be 

completed. Furthermore, agents may be programed by others, may or may not be able to 

communicate, and teammates are likely sub-optimal. Due to the uncertainty and dynamic 

changes of the environment, the ad hoc teams formed may result in inefficient or 

ineffective task solutions.  

There are many aspects of ad hoc team formation that have been studied, focusing 

on learning, leading, and dealing with uncertainties in agent behavior (Agmon, et al., 

2014; Barrett et al., 2012; Jumadinova et al., 2014; Stone, Gan, et al., 2010; Stone, 

Kaminka, et al., 2010; Wooldridge, 2009). For example, Stone, Kaminka, et al., (2010b) 
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proposed ad hoc teams where agents work together without pre-coordination in highly 

uncertain and dynamic environments.  Stone, Gan, et al., (2010) presented a probabilistic 

hill-climbing-based algorithm that allows autonomous agents with heterogeneous 

expertise to learn how to coordinate in coalitions that contain unknown agents to solve 

collaborative tasks. These research approaches capture a number of the necessary aspects 

(e.g., unknown teammates, heterogeneous expertise, and task solution that requires 

collaboration) of our coalition formation problem.   

However, the emphasis of such ad hoc team play problems is not on how the agent 

coalitions themselves form. As we try to study team formation in certain agents, like 

human, we need to consider several factors like how human learn from working in a team 

as well as observing a teammate. Research done so far, while considering learning 

(Barrentt et al. 2012), has not considered the learning that is present when agents—such 

as humans—work together in a team.   For example, when human agents work together, 

it is inevitable that they learn from each other, and occasionally they teach each other.  

Indeed, human agents do learn and evolve when they interact and work in a team through 

time. Through learning, agents can improve their capabilities so that they can do things 

better next time and improve the efficiency of the entire system. It is the learning that 

makes agents evolve in a dynamic complex system and adapt to the changes in the 

environment.  In ad hoc team formation, while prior knowledge of a potential teammate 

is not available, it is still possible for an agent to model the types of agents and tasks 

likely to be in the environment, and to assume that learning is inevitable when working 

together.  Such consideration and assumption will influence how agents form ad hoc 

teams—in how each decides to join an ad hoc team to help solve a task.  Thus, it is 
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necessary to consider learning when agents work together and its impact in subsequent 

tasks.   

Furthermore, a key question to ad hoc team formation is how agents should decide 

on which teams to join when taking into account the potential rewards or utility of 

learning while on a team. In a way, if learning consumes resources or its effectiveness 

might come at the cost of the overall rewards for solving the task, then there is a tradeoff. 

That is, an agent would have to trade off between combined reward resulting from 

optimizing on task rewards and that resulting from optimizing on learning.  Should an 

agent focus on learning now and sacrifice task rewards? Or should it focus on getting 

paid as much as possible now with the task rewards and worry about learning later? In an 

ad hoc environment where an agent has little or no knowledge about each individual 

potential teammate, how should such an agent leverage what it can model of the 

environment to help make this decision?  

We see that there are two types of openness from a multiagent viewpoint, 

extending the concepts from what have been proposed by Jumadinova et al., (2014). 

First, task openness refers to the rate of new, previously unseen tasks that are introduced 

into the environment. Second, agent openness refers to the rate of new, previously 

unknown agents that are introduced into the environment, while known agents exit the 

environment. For example, an agent whose particular capability is low may choose to 

join a team with a good opportunity to learn about this capability from other teammates 

even when the direct rewards of completing this task is low. Thus, if the degree of agent 

openness is high, such that different agents enter the environment and exit from it very 

often, then the likelihood to work with the same agent/agent type to learn about a 
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particular capability would be low. So, it might be prudent for the agent to lean towards 

joining a team to learn from the particular agent/agent type sooner than later. Also, if the 

task openness is high, such that different tasks appear and disappear from the 

environment very often, then the likelihood of encountering the same task/task type again 

would be low, then agents do not have to spend time, effort, and resource to learn to solve 

a particular task/task type—say, a difficult one—if the task/task type would not likely 

appear again in the future.  In that case, an agent might not care too much about learning 

to solve that task/task type, and instead aim for getting more direct rewards sooner. 

Agent openness and task openness, as well as the fact that agents will learn and 

evolve, make our open system a challenging system and yet very different from the 

traditional dynamic systems.  In traditional dynamic system, agents may be faulty and go 

offline, then they may or may not come back to the system. In our open system, the agent 

openness causes a set of agents changes, making old agents leave the environment and 

disappear forever as well as brand new agents, which the existing agents have never seen 

before, entering the system and thus forcing the existing agents to have to learn 

something new about theses brand new agents. The agents who leave the system take the 

expertise out of the system while the brand new agents who enter the system bring new 

expertise into the system. In such a system, agents constantly have to work with new 

different agents in general, which sets our open system apart from the regular dynamic 

system. The injection of new agents into the environment causes changes in our agents’ 

reasoning in two ways: (1) when an agent reasons or learns, not only it has to think about 

agent leaving, but also new agents entering; and (2) when an agent reasons, learns, or 
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acts, it has to work with new agents and it is impacted directly by its experience with 

these new agents and the loss of existing agents from its environment. 

Furthermore, according to task openness, tasks are changing over time. Old tasks 

leave the system and new tasks come into the system. Agents never know for certainty in 

advance what they need to do and what expertise they need to learn to benefit them from 

completing the future tasks. The task openness has an interesting correlation with 

learning, since agents want to learn to get better in the future, but they do not know for 

certainty what tasks are going to be available. This forces agents to model the 

environment and make decisions about what to learn and from whom to learn. 

1.2 Motivation  

Intelligent agents and multiagent systems have been used in a wide variety of 

applications to support human activities and decision making.   

One particular problem that agents are well suited to assist human users with is 

collaborative task assignment, where there exist a set of human users and a set of tasks 

that require multiple people to combine their individual skills and expertise to work 

together towards a common, temporary goal, earning each participant a share of a joint 

reward if the task is accomplished successfully.  In such a problem, a multiagent solution 

is advantageous because agents representing individual human users can first model the 

abilities of their assigned users, then find and acquire tasks that best benefit their users, 

while at the same time fairly allocate tasks across all users so that the overall system also 

benefits.  For example, agent-based human collaborative task assignment could be used 

to (1) form temporary teams of freelance workers (e.g., independent software developers 
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or artists) to satisfy contracts from companies lacking the internal expertise to accomplish 

tasks (e.g., developing particular pieces of software or graphic design), (2) combine the 

expertise and skills of office workers across divisions within large companies to 

accomplish tasks needed by the company, or (3) further improve matching students to 

peer-based learning tasks in computer-aided education. 

However, collaborative task assignment becomes much more challenging within 

dynamic, open environments where the system itself changes due to entities coming and 

going over time.  In particular, we consider two types of openness affecting the 

collaborative task assignment problem.  First, agent openness occurs whenever the set of 

human agents changes as people join and leave the environment over time.  This causes 

expertise and skills needed to accomplish tasks to become more or less prevalent, 

affecting the ability of software agents to find suitable people to accomplish each task.  

For instance, if an expert and skilled person leaves the environment, then tasks that could 

be successfully accomplished in the past might not be possible anymore.  Second, task 

openness occurs whenever the set of collaborative tasks changes: both new tasks 

requiring different expertise and skills appear and older tasks disappear over time.  

People specializing in certain types of tasks might need to adapt what they work on if 

those tasks disappear, while other people who had difficulty contributing might become 

more useful as new tasks related to their expertise and skills appear.   

Both types of openness cause uncertainty within the collaborative task assignment 

problem, as software agents do not know which tasks might be successfully 

accomplished now or in the future due to fluctuations in both the set of people needed to 

complete tasks, as well as the set of tasks itself.  Given that there might be multiple tasks 
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each person could contribute to at any point in time, yet a person can only contribute to 

one task at a time, openness makes the problem of selecting appropriate tasks for human 

users more difficult for software agents. 

1.3 Proposed Solution 

Our work uses a learner-driven approach for ad-hoc collaboration in a multi-agent 

task execution scenario. In our scenario, tasks can be broken down into different 

subtasks, each requiring certain expertise or capability to be completed. Meanwhile, each 

agent can improve its capabilities either by performing the subtask or observing other 

members solving the subtask in the team. Agents are autonomous. Consequently, each 

agent tries to improve its chance for getting selected in a task by improving the quality of 

its capabilities that maybe needed for future task.  

First, we have developed an ad hoc team formation framework that takes into 

account learning and task solving under varying degrees of environmental openness. The 

learning involved is based on “learning by observation” and “learning by doing” 

modeling learning theory on the zone of proximal distance. An additional emphasis here 

is about how an agent can choose a subtask to do such that joining a team to help 

complete an overall task allows the agent to position itself to gain from learning, from 

doing the subtask and from observing others working in the team. Furthermore, we have 

devised mechanisms to simulate agent and task openness. Running simulations of this 

framework, we were able to study various effects of considering agent openness (AO) 

and task openness (TO) in ad-hoc team formation. 
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Second, we have applied our ad hoc team formation framework to an agent-based 

collaborative human task assignment problem.  We have particularly addressed agent 

openness and task openness in this problem.  We have further modeled human learning 

by doing and by observation, and incorporated these into the agent’s reasoning about how 

to acquire tasks for its user.  Our solution develops an approach for modeling and 

learning unmeasurable uncertainty caused by environment openness to guide its decision 

making in maximizing human user reward and learning gains over sequences of tasks.   

1.4 Contributions  

First, we have developed an auction-based multiagent simulation framework, which 

is a mechanism to simulate openness in our environment, and have conducted 

comprehensive experiments. We have developed a Java based simulation package for our 

framework, which allows researchers to conduct extensive experiments to study ad hoc 

team formation problem. Chapter 5 talks about this work in detail. 

Second, we have established the importance of agent openness and task openness, 

gained insights into the relationship between the two factors, and investigated the 

effectiveness of several openness-based task selection strategies. In addition, we have 

identified several key next steps to continue with this line of research. Chapter 2 details 

such work. Chen et al., (2015) has published this work on the Proceedings of the 2015 

International Conference on Autonomous Agents and Multiagent Systems as extended 

abstract.  

Third, we have studied an agent-based collaborative human task assignment 

problem, which is a direct application of ad hoc team formation problem in open system. 
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We have developed solutions for agents to maximize their users’ rewards and learning 

gains over sequence of tasks. Chapter 4 talks about this work. Chen et al., (2016) has 

published this work on the Proceedings of the 2016 International Conference on 

Autonomous Agents and Multiagent Systems as extended abstract.  

 

1.5 Overview 

The rest of the chapters are organized as follows. First, Chapter 2 summarizes the 

related work in ad hoc team formation research. Chapter 3 discusses the investigations we 

have done in detail in ad hoc team formation in open system, including our auction based 

framework, simulation of openness, our proposed algorithms, as well as the empirical 

results of simulations and future work. Chapter 4 discusses how we applied the agent- 

based solution to collective human task assignment problem in detail, including the 

human learning model, the methodologies we used, the empirical results, and future 

work. Chapter 5 gives the details of our test bed and Chapter 6 concludes our work and 

identifies the future work.  
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Chapter 2: Background and Related Work  

In this chapter, we first discuss the background and related work for multiagent ad-

hoc team formation (Section 2.1). Then, we describe the background and related work for 

multiagent task allocation problem (Section 2.2), which is mentioned in the first chapter 

as a direct application of our ad hoc team formation framework. 

Wooldridge & Jennings (1995) described an agent as a computer system that is 

situated in some environment, and that is capable of autonomous action in this 

environment in order to meet its design objectives. An agent typically senses the 

environment and has some predefined actions that can be executed to affect the 

environment. Shoham & Leyton-Brown (2008) defined a multiagent system as one that 

consists of a number of agents, which interact with one another, typically by exchanging 

messages through some computer network infrastructure. In such a system, agents need 

to interact with each other, hence they need to cooperate, coordinate, and negotiate. 

Team formation is the problem of selecting the best possible team to accomplish a 

certain goal, given limited resources. In the traditional model, certain skills are necessary 

to accomplish a task, and we must select a team that has all the necessary skills with the 

maximum expected value (Marcolino, Jiang, & Tambe, 2013). In such a setting, tasks 

usually need multiple agents’ actions (cooperative actions) to be completed. Hence agents 

need to cooperate to form teams to perform collective actions to complete the task. Our 

ad hoc team formation framework allows agents to select best tasks to their interests and 

form a team to complete the tasks. We will further elaborate this later in this chapter. 
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A multiagent environment can have different properties, as classified by Russell 

and Norving (1995 p.46). An environment can be deterministic, in which the actions has 

a guaranteed effect, or it can be non-deterministic. Also, an environment can be static or 

dynamic. A static environment is the environment that can be assumed to be unchanged 

except by the actions of the agent, while dynamic environment changes without agent’s 

action and the changes is beyond the agent’s control. In addition, an environment can be 

discrete or continuous. An environment is discrete if there are a fixed, finite number of 

actions and percepts in it.  We can see that an environment can be complex. Hewitt 

(1986) referred to the environment that is inaccessible, non-deterministic, dynamic, and 

continuous as open. Our ad hoc team formation framework simulates such an open 

environment. In such environments, tasks can appear and disappear without notice, and 

agents can come and go as they please.  

In this thesis, we are interested in the investigation of the impact of agent and task 

openness in ad hoc team formation in complex environments.  

2.1 Multiagent Ad Hoc Team Formation 

The team formation task is to select the best possible team to accomplish a certain 

goal.  Existing team formation approaches often assume that the agents capabilities are 

known (e.g., Zhang & Parker (2012)). However, there are many real-world scenarios 

where different agents or robots with various of capabilities do not know each other, yet 

they have to coordinate and work in a team to complete a task or to meet a temporary 

goal. One of the scenarios is the disaster search and rescue scenario. When the disaster 

occurs, rescue teams rush into the areas that need help to provide assistance. Many search 
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and rescue robots are brought to the scene. Some of them are deployed to the site to 

complete some difficult or dangerous tasks. Many of these robots have not collaborated 

before, hence their capabilities are unknown to each other. Some of the robots are 

designed to work well with other types of robots, while some of them may not even have 

the ability to coordinate with each other. As a result of this, team strategies cannot be 

determined a priori. In such an ad hoc team formation problem, where team members 

have not collaborated before and they assume no prior knowledge of each other, selecting 

the agents/robots to form an optimal team is a challenging task.  

Stone, Kaminka, & Rosenschein (2010a) raised a question to challenge the AI 

community to create an autonomous agent that is able to efficiently and robustly 

collaborate with previously unknown teammates on tasks to which they are all 

individually capable of contributing as team members. As we expect agents to be capable 

of performing complex tasks and representing real world scenarios, there will be a need 

to develop agents which can function with autonomy, for longer periods of time, 

interacting with older legacy agents, and agents with different communication protocols 

or world models.  This requires agents that are capable of adapting with respect to other 

agents’ behavior.  

 Stone, Gan, et al. (2010) introduced a problem which is formulated as multi-armed 

bandit (MAB) problem with a teacher and learner agent. In this problem teacher and 

learner agents try to optimize a team goal (collect maximum number of cans). The 

teacher agent has to decide on either optimizing its own utility (collect higher number of 

cans itself), or going for a sub-optimal option in order to teach the learner agent. This 

MAB problem only considered the case that the remaining arm pulls are finite. Later on, 
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Barrett & Stone (2011) extended the result with the consideration of an infinite number of 

arm pulls with discounted rewards. One key factor in their work is that the teacher and 

learner agents are always present in the environment and do not leave. If, on the other 

hand, the agents can leave and new agents can enter the environment, there could be very 

different implications. Based on how frequently agents leave (or new agents enter) the 

environment, teaching might have to be done more frequently, less frequently, or even 

none at all. For example, if an agent is only in the environment for a very short time, then 

it could be better for the teacher agent to not teach, and instead improve its own utility as 

it does not make sense for the teacher agent to teach, when the learner agent might leave 

quickly, without staying long enough to implement and improve the team’s utility with 

what it has learned. It stands to reason that teaching frequently would be more beneficial 

only if the learning agent remains in the environment for a longer period of time, actually 

reaping the benefits of the new knowledge it has gained. Also, since the tasks in the 

environment are fixed, there is a guarantee on available tasks, and there are benefits of 

learning. Our consideration is that of an open environment, where task openness is 

considered, e.g., a task might have to be done frequently, or it could be a one-time task 

only. If the probability of certain task appearing in the system is more frequent, teaching 

other agents to solve those tasks would be beneficial. If not, then teaching would not be 

necessary and the knowledge gained to solve that particular task would likely not be 

used. This means, the decision to teach or not teach, would benefit from taking this factor 

into account, thus calling for the analysis on task and agent openness.  

Stone, Kaminka, & Rosenschein (2010) introduced a game-theoretic formulation 

problem in multiagent teamwork. The authors studied a two-player game where one 
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intelligent agent interacts with an old legacy agent that can respond by selecting its best 

response to a fixed history of actions. An algorithm for finding optimal sequence of 

actions is given for the intelligent agent to find the sequence of actions which will lead 

the old legacy agent to achieve the best joint long-term payoff. This work has been 

extended to using a single agent to lead multiple teammates to maximize the payoff 

through a series of joint optimal actions (Agmon & Stone, 2011). This work is considered 

ad hoc team formation by the authors since there are different types of agents involved 

(old agents and the new intelligent agents) and there are no direct communications 

between them and they never worked together before. In (Stone, Kaminka, & 

Rosenschein, 2010), the intelligent agent knows the full action policy of the old legacy 

agent but the old legacy agent assumes no knowledge of the intelligent agent. Though the 

two agents do not have direct communication nor they have prior collaboration, this 

setting is not purely ad hoc in terms of the amount of information that agents assume of 

their peers. What happens if both agents have absolutely no prior knowledge of each 

other? In this case, the intelligent agent must observe its peers to learn their action policy. 

What if the observed agents disappear? If the observed agents no longer appear in the 

environment, then all the learning effort made by the observing agent would be wasted. 

This work focused on how the new intelligent agent leads the old agent through joint 

actions to achieve maximum long-term goal instead of focusing on the team formation 

itself. In contrast, our work assumes neither prior knowledge of agents nor the number of 

agents available in the environment. We focus on the problem of how ad hoc teams 

should be formed to complete tasks so that the whole system can benefit in an open 

environment where both agents and tasks can come and go at any moment. 
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Another type of work in ad hoc team formation has been done by Wu, Zilberstein, 

& Chen (2011). With unknown teammates but the system states and joint actions being 

fully observable, Wu, Zilberstein, & Chen (2011) proposed an online planning algorithm 

that can be used by ad hoc agents to maximize the team’s joint reward by optimizing the 

joint actions of the team. Their approach is based on constructing and solving a series of 

stage games and then using biased adaptive play to choose actions. The algorithm 

proposed combining the advantages of biased adaptive play and UCT (Monte-Carlo tree 

search). In their work, planning is treated as an optimization problem in the joint policy 

space, which is constrained by the limited capabilities of teammates. The authors focused 

on the type of ad hoc teams in which a target agent knows the number of teammates as 

well as a set of their feasible actions, also the system state and the joint action played at 

each step are fully observable by the agent. In this setting, the target agent must reason 

about the past action sequences of its teammates online, learn from these interactions, and 

adapt its actions to its teammates. However, unlike our research, their work did not 

consider the learning capabilities of ad hoc teammates and assumed the domain is known, 

but make no assumptions of the behavior of teammates (teammates can be rational, 

irrational or in between). In our work, agent does enhance its capabilities while carrying 

out tasks in a team. Another key difference is along the level of openness in the 

environment. In their work, the tasks are fixed. More specifically, the agents form a team 

to do one task only. Their work is focused on how to coordinate well to accomplish the 

task, while our work supports the possibility of agents re-forming teams to do other tasks. 

Furthermore, in their work, the agents are fixed. No new agents would join the team and 

no team members would leave the team.  
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In Barrett, Stone, & Kraus (2011), the focus was on how ad hoc agents can 

perform, especially in the pursuit domain, where the agents are predators, trying to 

capture a prey. The actions that the agents perform in this environment are to capture the 

prey. An ad hoc agent in this setting has to model its teammates and choose best response 

to better suit the objective of the team, which is to catch the prey. There is an element of 

learning in the scenario, but this is limited to just on that action of capturing the prey. But 

ad hoc agents might be required to perform multitude of tasks, requiring different types 

of skills, thereby making it beneficial for them to learn multiple skills. This consideration 

of learning multiple skills is not made in Barrett et al., (2011) as those agents do not 

perform multiple type of tasks, but only a single type of task. Also, the teams in the 

scenario described in Barrett et al., (2011) are “static”, i.e. agents do not leave or enter 

the environment. The question we want to answer is, what might happen if agents can 

come and go as they please? For example, if a predator is replaced by a new predator, it 

would require other teammates to learn about the new predator teammate. Indeed, this 

dynamism in the environment motivates our research towards analyzing how the 

performance of teams is affected by the introduction of open environment in terms of 

tasks and teammates. 

2.2 Multiagent Task Allocation 

As mentioned in Chapter 1, our research in ad hoc team formation in open 

environment has many applications. One of the most related applications is collaborative 

human task assignment. In real world applications, there are many situations that the 

environment is open with respect to both workers and tasks. For example, when forming 
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temporary teams of freelance programmers to work on contracts, the availabilities of 

freelance programmers in the job market change over time. During an economy boom, 

the market is very attractive such that many skilled freelance programmers are drawn into 

the market. However, as soon as any of them is committed to a job, he or she will be tied 

up with that job and not available in the market for a certain period of time (assuming 

that only one job per programmer at any given time).  Meanwhile, it is also possible that 

the boom evolves faster than the capabilities of programmers such that jobs might not 

find sufficient programmers to fill them because of the freelance workforce simply does 

not have enough capable programmers in certain skills. In an economic recession, the 

market becomes not that attractive, many freelance programmers are leaving the market 

while some of them who are willing to work at a relative lower pay scale stills remains in 

the market. In addition, the projects/tasks also vary with the market change, hence 

different skills are needed to meet the changing market needs. This scenario demonstrates 

the dynamism of the real-world situation. This dynamism is represented in the 

characteristics of our open system in terms of agent and task openness. We see that the 

study in the impact of openness in such open environment in ad hoc team formation can 

benefit the real world in many ways.  

In fact, intelligent agents and multiagent systems have been used in wide variety of 

application to support human activities and decision making.  For instance, there are 

autonomous personal assistants that support their users in carrying out tasks, managing 

schedules, and so forth.  For example, Chalupsky et al. (2002) and Tambe et al. (2008) 

described Electric Elves that helped humans in accomplishing organizational activities, 

such as rescheduling meetings, selecting presenters for research meetings, tracking 
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people’s locations, and organizing lunch meetings.  Myers et al. (2007)  described a 

system that relieved the user of routine tasks and intervened in situations where cognitive 

overload leads to oversights or mistakes by the user. Berry et al. (2006) described a 

personalized agent called PTIME for time management and meeting scheduling as part of 

a larger assistive agent system called CALO. There are also collaboration support 

systems aimed at identifying for human users other human users to help with problem 

solving, teamwork, and learning. For example, Vassileva et al. (2015) described PHelpS 

that helped workers find appropriate helpers among their peers when they were 

encountering problems while interacting with their database, and I-Help that matched 

students with their peer helpers for university courses. Khandaker et al. (2011) described 

computer-supported collaborative learning applications called I-MINDS and 

ClassroomWiki to form optimal student teams based on students’ tracked and modeled 

behaviors. Finally, Sklar and Richards (2006) pointed out, in addition to peer learning 

agents, that there were also pedagogical agents and demonstrating agents used in human 

learning systems.  Pedagogical agents (Chalupsky et al., 2002) are designed to facilitate 

learner motivation and learning.  They act as tutors and model student learner profiles 

and the current state of knowledge to customize their interactions accordingly. 

In recent years, intelligent agents are widely used in our lives to work together with 

humans to accomplish certain tasks (Maes, 1994), some systems have humans working as 

information collector and information processor along with autonomous software agents 

within the systems (Kamar, Gal, & Grosz, 2013; Manson & O’Neill, 2007). Some 

systems let the agents pass information-processing tasks to the human, and then collect 

and aggregate the results (Ahn et al., 2008). The relationship between humans and 
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machines/agents has been changed. Humans and agents now have more and more flexible 

social interactions. Jennings et al., (2014) defined this emerging class of systems/teams as 

human-agent collectives (HACs). In many cases, humans are playing the major role while 

agents are playing the supporting role to make suggestions while in some cases agents are 

playing the major role and humans are play the supporting role. For instance, the 

automatic parking systems on some of the newer cars allow the computer to make 

decisions on whether the parking space is big enough to park the car or not and the 

computer takes over the steering wheel, leaving the driver to only control the breaks. 

Another example would be Tesla’s autopilot. The system offers auto steering, and 

adaptive cruise control, which allows the car to steer and keep a safe distance between the 

car in front. Human in this case only takes over when some corrections are needed in the 

rare case when the system cannot fully sense the environment. The HACs system/team 

allows agents and humans to interact/engage in flexible relationships to achieve a 

common goal. Flexible relationships mean sometimes humans are in control or take the 

lead, sometimes the computers do. The relationship between humans and computers can 

change in a dynamic way. Our human task assignment system is similar to HACs to some 

extent, but the relationships between humans and its assigned agents are fixed. Our 

system allows agents to interact with people to discover their preferences, skills, and 

expertise, then find suitable tasks that maximize both the user’s utility gain and learning 

opportunities in complex environments by modeling uncertainty in the outcomes of bids 

caused by openness. To simplify the complicity of our system, we assume the users’ 

abilities are accessed by experts and represented by numeric value between 0 to 1, where 

0 means no ability and 1 means expert ability. We further assume that the tasks obtained 



www.manaraa.com

by agents are all completed by its human users in a fixed amount of time (1 tick), the 

failure of completing the tasks will be considered in the future work.  
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Chapter 3: Investigation on Agent and Task Openness  

3.1 Introduction 

Many aspects of ad hoc team formation have been studied, focusing on learning, 

leading, and dealing with uncertainties in agent behavior (Agmon, et al., 2014; Barrett et 

al., 2012; Jumadinova et al., 2014; Stone, Gan, et al., 2010; Stone, Kaminka, et al., 2010; 

Wooldridge, 2009). For example, Stone, Kaminka, et al. (2010b) proposed ad hoc teams 

where agents work together without pre-coordination in highly uncertain and dynamic 

environments.  Stone, Gan, et al. (2010) presented a probabilistic hill-climbing-based 

algorithm that allows autonomous agents with heterogeneous expertise to learn how to 

coordinate in coalitions that contain unknown agents to solve collaborative tasks. 

But as we try to study team formation in certain agents, like human, we need to 

consider several factors like how human learn from working in a team as well as 

observing a teammate. Research done so far, while considering learning (Barrentt et al. 

2012), has not considered the learning that is present when agents—such as humans—

work together in a team.  For example, when human agents work together, it is inevitable 

that they learn from each other, and occasionally they teach each other.  Indeed, human 

agents do learn and evolve when they interact and work in a team through time. Through 

learning, agents can improve their capabilities so that they can do things better next time 

and improve the efficiency of the entire system. In ad hoc team formation, while prior 

knowledge of a potential teammate is not available, it is still possible for an agent to 

model the types of agents and tasks likely to be in the environment, and to assume that 

learning is inevitable when working together.  Such consideration and assumption will 
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influence how agents form ad hoc teams—in how each decides to join an ad hoc team to 

help solve a task.  Thus, it is necessary to consider learning when agents work together 

and its impact in subsequent tasks.   

Furthermore, a key question to ad hoc team formation is how agents should decide 

on which teams to join when taking into account the potential rewards or utility of 

learning while on a team. In a way, if learning consumes resources or its effectiveness 

might come at the cost of the overall rewards for solving the task, then there is a tradeoff. 

That is, an agent would have to tradeoff between combined reward resulting from 

optimizing on task rewards and that resulting from optimizing on learning.  Should an 

agent focus on learning now and sacrifice on task rewards? Or should it focus on getting 

paid as much as possible now with the task rewards and worry about learning later? In an 

ad hoc environment where an agent has little or no knowledge about each individual 

potential teammate, how should such an agent leverage what it can model of the 

environment to help make this decision?  

We see that there are two types of openness from a multiagent viewpoint, 

extending the concepts from what have been proposed by Jumadinova et al. (2014). First, 

task openness refers to the rate of new, previously unseen tasks that are introduced into 

the environment. Second, agent openness refers to the rate of new, previously unknown 

agents that are introduced into the environment, while known agents exit the 

environment. For example, an agent whose particular capability is low may choose to 

join a team with a good opportunity to learn about this capability from other teammates 

even when the direct rewards of completing this task is low. Thus, if the degree of agent 

openness is high, such that different agents enter the environment and exit from it very 
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often, then the likelihood to work with the same agent/agent type to learn about a 

particular capability would be low. So, it might be prudent for the agent to lean towards 

joining a team to learn from the particular agent/agent type sooner than later. Also, if the 

task openness is high, such that different tasks appear and disappear from the 

environment very often, then the likelihood of encountering the same task/task type again 

would be low, then agents do not have to spend time, effort, and resource to learn to solve 

a particular task/task type—say, a difficult one—if the task/task type would not likely 

appear again in the future.  In that case, an agent might not care too much about learning 

to solve that task/task type, and instead aim for getting more direct rewards sooner. 

Our work in this investigation uses a learner-driven approach for ad-hoc 

collaboration in a multi-agent task execution scenario. In our scenario, tasks can be 

broken down into different subtasks, each requiring certain expertise or capability to be 

completed. Meanwhile, each agent can improve its capabilities either by performing the 

subtask or observing other members solving the subtask in the team. Agents are 

autonomous. Consequently, each agent tries to improve its chance for getting selected in 

a task by improving the quality of its capabilities that maybe needed for future task. In 

this thesis, we propose four task-selection strategies considering potential learning gain 

differently, and three more task-selection strategies that also consider agent and task 

openness. We also consider different agent types and different degrees of openness of 

environment. Agent types are a pre-defined set of agents including novice agents, average 

agents, and expert agents. An expert agent is one that has more expert capabilities than an 

average agent, and so does an average agent over a novice agent. Here we report on our 

experiments showing the impact of agent and task openness on the environment, agent’s 
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learning and task performance, investigating the roles of the different task selection 

strategies, and demonstrating the importance and need to consider openness in multiagent 

ad hoc team formation problems. 

3.2 Related Work 

In Stone, Gan, et al. (2010), teacher and learner agents try to optimize a team goal 

(collect maximum amount of cans) where the problem is formulated as an instance of k-

armed bandits problem. The teacher agent has to decide on either optimizing its own 

utility (collect higher number of cans itself), or going for a sub-optimal option in order to 

teach the learner agent. One key factor is that the teacher and learner agents are always 

present in the environment and do not leave. If, on the other hand, the agents can leave 

and new agents can enter the environment, there could be very different implications. 

Based on how frequently agents leave (or new agents enter) the environment, teaching 

might have to be done more frequently, less frequently, or even none at all. For example, 

if an agent is only in the environment for a very short time, then it could be better for the 

teacher agent to not teach, and instead improve its own utility as it does not make sense 

for the teacher agent to teach, when the learner agent might leave quickly, without 

staying long enough to implement and improve the team’s utility with what it has 

learned. It stands to reason that teaching frequently would be more beneficial only if the 

learning agent remains in the environment for a longer period of time, actually reaping 

the benefits of the new knowledge it has gained.  

Also, since the tasks in the environment are fixed, there is a guarantee on available 

tasks, and there are benefits of learning. Our consideration is that of an open 
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environment, where task openness is considered, e.g., a task might have to be done 

frequently, or it could be a one-time task only. If the probability of certain task appearing 

in the system is more frequent, teaching other agents to solve those tasks would be 

beneficial. If not, then teaching would not be necessary and the knowledge gained to 

solve that particular task would likely not be used. This means, the decision to teach or 

not teach, would benefit from taking this factor into account, thus calling for the analysis 

on task and agent openness. 

In  Barrett et al. (2011), the research is on how ad hoc agents can perform, 

especially in the pursuit domain, where the agents are predators, trying to capture a prey. 

The actions that the agents perform in this environment are to capture the prey. There is 

an element of learning in the scenario, but this is limited to just on that action of 

capturing the prey. But ad hoc agents might be required to perform multitude of tasks, 

requiring different types of skills, thereby making it beneficial for them to learn multiple 

skills. This consideration of learning multiple skills is not made in Barrett et al. (2011) as 

those agents do not perform multiple type of tasks, but only a single type of task.  

Also, the teams in the scenario described in Barrett et al. (2011) are “static”, i.e. 

agents do not leave or enter the environment. The question we want to answer is, what 

might happen if agents can come and go as they please? For example, if a predator is 

replaced by a new predator, it would require other teammates to learn about the new 

predator teammate. Indeed, this dynamism in the environment motivates our research 

towards analyzing how the performance of teams is affected by the introduction of open 

environment in terms of tasks and teammates. 
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3.3 Simulation Framework 

3.3.1 Multiagent System Design 

We model our ad hoc environment using three main components. A set of existing 

tasks (tasks inside of the environment),	𝒯, a set of existing agents (agents inside of the 

environment), 𝛢, and a blackboard-based publish-subscribe system. In our environment, 

existing agents can communicate and collaborate through the blackboard without 

knowing each other beforehand. For example, to form a team to solve a task 𝑇 ∈ 𝒯, 

agents need to bid for 𝑇 in an auction held by the administrator of the environment on the 

blackboard, without direct communications with other agents. Therefore, agents bidding 

for 𝑇 have no idea of with whom they will work until after the auction results are 

disclosed. Agents who win the auction may, consequently, work with other agents they 

have never met before. Agents can also access current tasks information through the 

blackboard to assist their decision-making. The environment is managed by an 

administrator (admin). New agents are introduced into the environment and some existing 

agents are removed from the environment, based on the Agent Openness (AO) parameter, 

by the admin. The admin obtains new agents from an agent’s pool outside of the 

environment. Removed agents from the environment will not be sent back to the agents’ 

pool. New tasks are also introduced into the environment, based on the Task Openness 

(TO) parameter, by the admin obtaining or sampling new tasks from a tasks pool.  
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3.3.2 Openness 

Task Openness (TO). Task openness affects the relative values of immediate versus 

delayed task rewards and outcomes. Many aspects of real world collaborative group 

processes involve a time delay between when a decision is made and when the benefits 

for that decision are realized. Decisions may require balancing of short-term gain or 

success versus future potential gains or successes.  In the environment, agents making 

decisions in team formation have to tradeoff between current and future task rewards, as 

less-than-optimal rewards for a current task may produce higher rewards for other tasks 

in the future. For example, in a resource-constrained environment, an agent might 

withhold its resources from optimally solving a current task T1, with the expectation that 

it would use the resources to solve a future task T2 that has a higher reward. However, if 

the environment has high task openness, trading off current rewards for future ones might 

not be a good idea, as T2 might never appear in the environment again. These inter-

temporal choices are inherent in virtually all decision-making contexts, and inclusion of 

the openness of the tasks in the environment is therefore critical for effective modeling of 

team functioning. In the real world, task repetition and scheduling, as well as the 

occurrence and evolution of new tasks and requirements, are some of the various reasons 

that could affect TO. 

Agent Openness (AO). Agent openness affects decisions of team members to 

collaborate or to share their knowledge or expertise or learn from others. Teams may 

involve members with different types and skillsets, often diverse in their makeup in real-

world situations. As such, agents may have heterogeneous sensing, reasoning, and acting 
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capabilities that may or may not be known to the other agents in the first place. In such 

situations, multiagent learning approaches have been proposed for agents to learn from 

each other and even to share knowledge (e.g., teach) with each other (Barrett et al., 

2011). However, deciding to learn or teach is not trivial. Let us consider two cases. Case 

1: Suppose A1 has to decide whether to join one of two teams, C1 or C2. Joining C1 

would give a higher reward; however, joining C2 would give A1 an opportunity to work 

with and learn from a high-capability agent A2. Case 2: Suppose that A1 has to decide 

whether to share knowledge with another agent A3, with the idea that if A1 shares 

knowledge with agent A3 now, the benefits from working with an improved A3 in future 

teams would outgain the expense. Such considerations are certainly valid and could lead 

to optimization of rewards. However, what if A2 is not capable of sharing in Case 1, and 

A3 exits from the environment in Case 2?  Then A1’s decision to join C2 (Case 1) would 

be unwise and its efforts to teach (Case 2) would be all for naught.  Thus, modeling such 

AO of the environment can help knowledge sharing and can help optimize the learning. 

In real-world situations, equipment faults, sensor downtimes, instrument malfunctions, 

personnel changes, and role re-assignments are some of the factors impacting AO. 

Simulating Openness. In our experiments, we simulate both AO and TO by 

introducing new agents and tasks in our simulation. We randomly remove agents from 

the simulation and introduce agents that were not previously present in the simulation in 

order to implement AO. The rate at which we remove the agents in the simulation and 

introduce newer agents depends on AO, 𝐴𝑂 ∈ 	 [0,1], where 0 means no new agent is 

introduced and 1 means the all the 𝑁?	agents that exist at the time t = 0 will be replaced 

by the end of the simulation with different agents. In general, the number of agents 
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removed at each clock tick is (𝑁?/𝑇′) ∗ AO  where 𝑇′ is total simulation ticks. (Note that 

(𝑁?/𝑇′) ∗ 𝐴𝑂 is not always an integer, in which case we accumulate the floored decimal 

values, when it reaches 1, then we remove one more agent from the environment at that 

tick.) TO is also simulated by introducing tasks which have different sub-tasks and 

difficulty as the simulation moves forward, 𝑇𝑂 ∈ 	 [0,1]. One new task is added to the 

system at each tick in the simulation and TO = 0 means that each new task has already 

appeared before in the environment and TO = 1 means each new task is a different task 

from the ones already in the environment (i.e., tasks which have different combinations 

of subtasks and difficulty). 

Agents Perceiving Openness. For the purposes of our experiments, to investigate 

the impact of considering openness when an agent makes decisions, we use the ideal 

assumptions that agents know exactly the actual values of AO and TO. Note that this is 

not necessarily true in real world ad hoc situations, and we will address this as future 

work.  In our design, the admin publishes the AO and TO on blackboard so that every 

agent receives the “ground truth”. We term this approach “informed perception”. 

3.3.3 Tasks and Capabilities 

We define 𝒯 be a set of all tasks in the environment, each task 𝑇 ∈ 𝒯 is determined 

by the subtasks comprising the task. Let 𝜏 denote the set of all subtasks in our 

environment, so we have 𝑇 = {𝜏H, 𝜏I,⋯ , 𝜏 K } , where 𝜏 ∈ 𝜏 . Similarly, 

𝒞 = 𝑐H, 𝑐I, … , 𝑐 P  denote the set of all capabilities that agents could have. Each 

subtask	𝜏 ∈ 𝜏 requires exactly one capability 𝑐 from the set 𝒞 to solve. For example, in 

order to solve subtask 𝜏Q, the capability 𝑐Q is needed. Also, in our design, each subtask 𝜏Q 
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is associated with two more parameters, the minimum number of agents 𝑛Q that are 

required to perform the subtask 𝜏Q, the minimum quality threshold 𝑞𝑡Q ∈ 	 (0,1] that 

agents are required to have in order to perform the subtask.  A subtask 𝜏Q can appear in 

many different tasks, with possibly different 𝑛Q and 𝑞𝑡Q. Furthermore a set of agent is 

denoted as 𝐴, and each agent 𝑎V ∈ 𝐴 is described by 𝒄𝒂𝒑𝒊 = 𝑐𝑎𝑝V,H, 𝑐𝑎𝑝V,I,⋯ , 𝑐𝑎𝑝V,|𝒞| ∈

[0,1]|𝒞| where 𝑐𝑎𝑝V,Q denotes 𝑎V’s expertise with respect to the 𝑘-th capability 𝑐Q. 

3.3.4 Learning 

Learning happens in several ways. In our simulation, we focus on two types. We 

assume that it is inevitable that an agent (e.g., a human) would learn some of the 

experiences and expertise of certain skills either from practicing (learn by doing) or from 

watching its collaborators performing the tasks (learn by observation). This learning 

process is likely to lead to changes in an agent’s capabilities and subsequent decision 

making. To this end, we adopt the following learning framework based on principles 

from human learning theory (Khandaker & Soh, 2007). When a person practices some 

skills, when he/she does not have much expertise in the beginning, the room for 

improvement is relatively large and the learning gain is apparent. As they gain more 

experience and become better and better, the improvement becomes harder and the 

learning gain also diminishes. Following this theory, we designed our learning by doing, 

using Equation. 3.1, with agent 𝑎V	on capability	𝑘.  

𝐺𝑎𝑖𝑛_`ab 𝑎V, 𝑘 = c
d?ef,ghi

		 (3.1)	
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where 𝜂 is a constant denoting the increment in knowledge from self-learning and 𝜀 is a 

small number in case 𝑐𝑎𝑝V,Q= 0. This gives the amount of capability increase of agent 

𝑎V	on capability	𝑘. 

Moreover, in human learning scenarios, when a person learns from another, the 

amount of information transferred between two agents is proportional to the knowledge 

gradient between them (Jumadinova et al., 2014). Following this approach, we model the 

learning gain by a learner agent, 𝑎a, from interacting with a practicing agent, 𝑎l, on 

capability k to be proportional to the capability difference between them, 𝑐𝑎𝑝l,Q − 𝑐𝑎𝑝a,Q. 

Note that as we do not consider explicit teaching in the current simulation, we do not 

identify practicing agents as “teacher” agents. 

Designing an appropriate function to quantify the learning gain while modeling 

human learning requires some insight. Vygotsky’s zone of proximal development (ZPD) 

theory (Vygotsky, 1978) suggests that it may be difficult for two persons to teach/learn 

from each other if the amount of prior knowledge they have on a topic is vastly different 

from each other or almost identical to each other. At the same time, as the learner’s 

knowledge increases, the amount of learning gain that it can obtain also diminishes, as its 

knowledge starts to converge with that of the teacher. Based on this theory, we design the 

learning gain function of agent 𝑎a observing agent 𝑎l successfully completing a subtask 𝑘 

as in Equation 3.2 below. 
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𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘

=

		
0																																																																			𝑖𝑓	𝑥 < 0			

−
𝛽
𝛼I 𝑥

I + 2
𝛽
𝛼 𝑥																																			𝑖𝑓	0 ≤ 𝑥 < 𝛼	

−
𝛽

𝛼 − 1 I 𝑥
I +

2𝛼𝛽
𝛼 − 1 I 𝑥 +

𝛽 1 − 2𝛼
𝛼 − 1 I 			𝑖𝑓	𝛼 ≤ 𝑥 < 1

																			

(3.2) 

where 𝑥 is the capability difference between agent 𝑎l and agent 𝑎a, 𝑥 = 𝑐𝑎𝑝l,Q −

𝑐𝑎𝑝a,Q		and 𝛽 is the maximum learning gain that 𝑎a can acquire from observing agent 𝑎l, 

and 𝛼 is the capability difference that gives the maximum learning gain (when 𝑥 = 𝛼, the 

learning gain is 𝛽, which is the maximum learning gain).  With the function described in 

Equtation. 3.2, we can see that when the capability difference 𝑥 is small (between 0 and 

𝛼) the learning gain drops rapidly as 𝑥 gets smaller from 𝛼 to 0 and the learning gain 

reaches 0 when the two agents have equal knowledge.  

Finally, we define the total learning gain of an agent	𝑎V, when working in a team, as 

in Equation 3.3. 

𝐺𝑎𝑖𝑛 𝑎V = 	 𝐺𝑎𝑖𝑛y`ab 𝑎V, 𝜏z{|∈K + 𝐺𝑎𝑖𝑛no_`pq` 𝑎V, 𝑎}z?~, 𝜏�{�∈K∖ {| 								 (3.3)	

where we assume 𝑎}z?~ ∈ 𝐴K ∖ 𝑎V , where 𝐴K denotes all the agents that are assigned to 

solving task 𝑇, 𝑗z?~ = arg	max
}
𝐺𝑎𝑖𝑛 𝑎V, 𝑎}, 𝑘 	 for a particular capability 𝑘.		This means 

that if 𝑎V observes more than one agent completing a subtask 𝜏�,	we will use the agent 

𝑎}z?~ to determine most learning by observation gain for 𝑎V. 
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Note that a key difference between the above learning by observation approach and 

learning by being taught as modeled in Stone, Gan, et al. (2010) is that when an agent 

considers potential learning gain here, the agent implicitly tries to put itself in a situation 

where it would be more likely to learn from observing others to improve its capabilities 

and agents in our design presently do not have to worry about whether to teach, whereas 

an agent in Stone, Gan, et al. (2010) has to reason explicitly about teaching. Moreover, 

our agent design only considers how to improve an agent’s own capabilities and not 

others as in Stone, Gan, et al. (2010). Nevertheless, teaching in Stone, Gan, et al. (2010) 

does not require specific contract or agreement from the agents to be taught, and thus 

parallels our learning by observation at least in spirit.  And in our future work we will 

integrate agent teaching of Stone, Gan, et al. (2010) to more completely capture learning 

occurring in ad hoc teams. 

3.3.5 Task Selection Strategies 

In our simulation design, tasks are allocated through auctions held on blackboard. 

Agents can see the available tasks as well as tasks’ specification. Then, based only on this 

information and agents’ perception of AO and TO, agents make decisions on which task 

to bid on. When an agent chooses a task to bid, it needs to consider several things: (1) the 

direct task rewards for helping completing the task, (2) the learning rewards/gains it can 

get both from practicing its skills when executing the subtask (learning by doing) and 

from observing its team members completing other subtasks (learning by observation), 

and (3) the uncertainties in the environment, as captured in the environmental openness 

(AO and TO)—more specifically, the expected availability of agents from whom the 
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capabilities can be learned via working in a team and the type of tasks that would likely 

appear in the future. To this end, we propose the following task selection strategies. 

These strategies are based on the assumption that the system administrator—i.e., 

auctioneer—assigns each subtask 𝜏 ∈ 𝑇 to the agents who bid on the task 𝑇 with the best 

matching capability. 

In the following, the first three task selection strategies are based on the evaluation 

of the subtasks’ quality requirements and the agents’ quality of corresponding capabilities 

only; there is consideration for neither AO nor TO. The next four strategies do consider 

environmental openness. In the following, let 𝑇o`_l denote the task that an agent chooses 

to bid on that is to its best interest. Each agent 𝑎V has a vector, 

𝒄𝒂𝒑𝒊 = 𝑐𝑎𝑝V,H, 𝑐𝑎𝑝V,I,⋯ , 𝑐𝑎𝑝V,|𝒞| , and 𝑐𝑎𝑝V,Q, denotes the 𝑘th capability of agent 𝑎V in 

𝒄𝒂𝒑𝒊. 

 

Strategy 1. Most Qualified (MQ) 

𝑇���� = arg	max
	K

𝑐𝑎𝑝V,Q − 𝑞𝑡QQ   (3.4) 

Notice here, we sum over 𝑘, where 𝑘 ∈ 𝑘|𝑐𝑎𝑝V,Q > 𝑞𝑡Q	𝑎𝑛𝑑	𝜏Q ∈ 𝑇 . With this 

MQ strategy, we find the total of positive differences of agent 𝑎V’s corresponding 

capabilities of subtasks and the quality requirement of subtasks in each task T.  Since an 

agent 𝑎V is capable of doing a subtask 𝜏Q,	then this agent must have its 𝑐𝑎𝑝V,Q − 𝑞𝑡Q > 0, 

and the bigger the difference is, the more qualified it is for this subtask.  
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Strategy 2. Most Learning Opportunity (MLO)  

𝑇o`_l = arg	max
	K

𝑈�o`pq`(𝑇) 	 	 	 	(3.5)	

𝑈�o`pq` 𝑇 =
d?ef,g���lg�g�

��
	 	 	 (3.6)

	

where 𝑘� ∈ {𝑘�|𝑐𝑎𝑝V,Q� < 𝑞𝑡Q�	, 𝜏Q� ∈ 𝑇}, 𝑈�o`pq` 𝑇 	 is the potential utility that the 

bidding agent can gain from observing other teammates executing the subtasks, and	𝑛� is 

the number of subtasks observed. Note that not all 𝑇 ∈ 𝑇?q?Va?oa` are candidates for an 

agent to apply this strategy. If agent 𝑎V does not have a subtask 𝜏Q s.t. 𝑐𝑎𝑝V,Q − 𝑞𝑡Q ≥ 0, 

then 𝑎V will not consider bidding for this task. 

Strategy 3. Most Qualified + Learning (MQ+LO) 

This strategy is a hybrid of the first two strategies. Agents not only consider the 

opportunity to learn from other agents by observation but also consider their qualification 

for solving one subtask within a task. 

𝑇o`_l = argmax
	K

𝑈a`?p� 𝑇 																														(3.7)	

where 𝑈a`?p� 𝑇 = (𝑈��V�� 𝑇 + 𝑈�o_`pq`)/2, 𝑈��V�� 𝑇 = 𝑐𝑎𝑝V,}|�� − 𝑞𝑡}|�� , 

𝑗��� = argmax
	}

𝑐𝑎𝑝V,} − 𝑞𝑡} , 𝜏} ∈ 𝑇 and 𝑐𝑎𝑝V,} − 𝑞𝑡} ≥ 0. Note that 𝑈��V�� 𝑇  is the 

expected utility of the bidding agent for executing its best qualified subtask of 𝑇. It 

computes the largest positive difference of agent 𝑎V’s 𝑐𝑎𝑝V,} and the required quality 

threshold 𝑞𝑡}. This term considers this agent’s qualification of its best quality that 

matches the task’s required capabilities. 𝑈�o`pq` 𝑇  is same as defined in Eq. 3.6.  

Similar to MLO, if there is no 𝑗��� for task 𝑇,	then the agent does not bid for it. 
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Before introducing the next set of task selection strategies, here we define a key 

term called the total potential utility of participating in the solution of a task 𝑇 in 

Equation 3.8. 

𝑈 𝑇 = 𝑤� ⋅ 𝑈a`?p� 𝑇 + 𝑤y ⋅ 𝑈_�aq` 𝑇 		 	(3.8)	

where 𝑤� and 𝑤y are the weights for learning and solving a task, respectively, and 𝑤� +

𝑤y = 1. 𝑈a`?p� 𝑇  is the potential utility from learning by doing and learning by 

observation as defined in Eq. 3.7 above.  𝑈_�aq` 𝑇  is the potential utility of the bidding 

agent participating in solving the task 𝒯, as in Eq. 3.9:  

𝑈_�aq` 𝑇 = 𝜌 �l¡|��
�lg∗�gg

	 ⋅ 𝑅K 	 	 	(3.9)	

where 𝑗z?~ = argmax
	}

𝑐𝑎𝑝V,} − 𝑞𝑡} , 𝜏} ∈ 𝑇 and 𝑐𝑎𝑝V,} ≥ 𝑞𝑡},	and 𝜌 is an adjustment 

factor to put the 𝑈_�aq` 𝑇  in roughly the same range as 𝑈a`?p� 𝑇 in our simulations. 

Notice in the denominator, we sum the required quality threshold of each subtask, 𝜏Q ∈

𝑇, multiplied by each agent number requirement 𝑛Q, to model the difficulty level of a 

task. 𝑅K	is a parameter that represents the reward for completing the task 𝑇. In the case 

that there is no 𝑗z?~ then 𝑈_�aq` 𝑇 = 	0, and the agent does not bid for this task since it 

is not qualified for it. 

The following task selection strategies are all based on the total potential utility. 

Notice in Equation. 3.8, there are two parameters 𝑤� and 𝑤y, which are the weights for 

learning and solving a task, respectively. An agent’s perception of the environmental 

openness, AO and TO, could and should affect its decisions on task selection through 

shifting the weights 𝑤� and 𝑤y. For example, in the case that an agent perceives that AO 
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is high—which means agents come and leave very frequently, the likelihood for the agent 

to, say, work with the same agent again to learn a particular capability is low. So, in such 

a scenario, an agent might want to learn things as much or as soon as possible so that they 

can acquire the capability to solve the task that are highly likely to appear again in the 

future to gain more utilities. Therefore, it is prudent to increase the weight of 𝑤� to 

emphasize more on learning. On the other hand, if the agent perceives that TO is high, 

then the tasks change very frequently.  In such environment, agents do not have to learn 

to solve a particular task—say, a difficult one—if the task would not likely appear again 

in the future, then the likelihood of encountering new tasks which require different 

capabilities could be very high. In that case, the agents might not care too much about 

learning to solving particular tasks, and aim for getting more rewards sooner. Therefore, 

shifting more weight to 𝑤� to focus on getting immediate rewards makes more sense. 

Strategy 4. Most Total Potential Utility (MTPU) 

𝑇o`_l = argmax
	K

𝑈 𝑇 		 	 	 (3.10)	

where 𝑈 𝑇  is the total potential utility as defined in Eq. 3.8. Within this MTPU strategy, 

we have several interesting variants by setting the weights differently: Strategy 4.1. 

MTPU_L=S with 𝑤� = 𝑤y = 0.5; Strategy 4.2. MTPU_L<S with 𝑤� = 0.25, 𝑤y =

0.75, and Strategy 4.3. MTPU_L>S with 𝑤� = 0.75, 𝑤y = 0.25;  

Strategy 5. MTPU with Agent Openness (MTPU+AO) 

This strategy is also based on Equtation. 3.9, but taking 𝐴𝑂 into account. As we 

mentioned above, when agents come and go frequently (AO is high), putting more 
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attention on learning certain capabilities from certain agent before it leaves the 

environment might be a wise decision.  Hence, for the MTPU+AO strategy, we set 𝑤� =

𝐴𝑂	and 	𝑤y = 1 − 𝐴𝑂. 

Strategy 6. MTPU with Task Openness (MTPU+TO) 

Similarly, using the same Equation. 3.10, but taking TO into account. When TO is 

high, focusing on immediate rewards is a good choice. Hence for this strategy, we set 

𝑤� = 1 − 𝑇𝑂	and 𝑤y = 𝑇𝑂. 

Strategy 7. MTPU with Both Openness (MTPU+ATO) 

Similarly, using the same Equation. 3.10 for the MTPU+ATO strategy, we use 

𝑤� = 	
¤n

¤nhKn
 and 𝑤y =

Kn
¤nhKn

. We define 𝑤� and 𝑤y in Strategy 7 as such so that when 

AO and TO are either high or both low, the weight for learning (𝑤�) and the weight for 

getting the immediate rewards (𝑤y) are not too different from each other.  

On the other hand, when AO is high and TO is low, we will get	𝑤� > 𝑤_. In this 

case, agent-leaving rate is high. The chance for encountering a particular agent to learn a 

particular capability is slim. Hence seizing the opportunity to learn some particular 

capability before its gone might be critical. Meanwhile, the tasks (task types) more or less 

will be the same over time, due to the low TO. Hence, learning a particular skill or 

capability, say a useful one that is currently in demand, is promising to bring more future 

benefits. These two considerations both suggest that focusing more on learning might be 

a better choice. 
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Conversely, when TO is high and AO is low, it will result in 𝑤_ > 𝑤�. In this case, 

tasks are changing rapidly and different tasks usually require different skills to perform. 

So, it might not make much sense for an agent to learn some particular capabilities, since 

those capabilities might not be needed again. It might be then wiser to focus on getting 

more things done and getting more rewards now. In addition, agents are more stable in 

this case due to low AO; there is more chance to learn some particular skills from some 

agents, since the agents who have special capabilities tend to stay around longer in the 

environment. Hence there is no need to worry about the “expertise” to solve a particular 

subtask of a task to disappear from the environment. These two reasons suggest that 

agent solving the task and getting immediate rewards might deserve more attention.  

3.4 Results 

3.4.1 Configuration Parameters 

Before we can analyze the roles of task openness and agent openness in the ad hoc 

teams, we need to come up with two important configuration parameters for our 

simulations: (1) the distribution of different agent types—expert, average, and novice—in 

the system and (2) a configuration of required time for agents to finish a task (𝑡K) and the 

required number of agents to finish a task (𝑛K) to facilitate the feasibility of completing 

high number of tasks and achieving sufficiently high total learning gain.  Since these 

parameters are set to afford us meaningful, comparable results for a wide range of 

openness levels, we dub this configuration Facilitator Configuration (FC). For this effort, 

we used task selection strategy 3 (MQ+LO) and defined an expert agent as one with at 
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least one of its initial capabilities in the range of [0.7 to 1.0], an average agent of range 

[0.3 to 0.7], and a novice agent in the range of [0.0 to 0.3]. 

After running experiments with different mix of expert, novice and average agents, 

we realized that a uniform distribution of the agent types—33.33% for each type— would 

result in better task completion and total learning than with configuration having higher 

number of expert or average agents. The uniform agent configuration would mean that 

there are balanced numbers of expert agents to help complete tasks and of average and 

novice agents involved in completing tasks and learning.  

Next, we used the above uniform agent configuration to run simulations with 

different values of 𝑡K and	𝑛K. The simulation results are provided in Tables 3.1 and 3.2.  

From Table 3.1, we see that the scenario with 𝑡K= 25 and 𝑛K	= 1X produced highest 

learning efficiency for all agent types. From Table 3.2, the same configuration also 

performed well in terms of tasks completion with 74.53% task completion rate, with 

highest task completion rate for novice agents and very high task completion rate for 

average agents. Lower 𝑛K allowed agents to form teams which were capable of solving 

most tasks. 25 ticks to finish a task might look counter intuitive as shorter tasks are easier 

to be completed. But, if the tasks are really short then only expert agents would be 

involved in solving them, thereby decreasing the learning gain, as novice and average 

agents would not have opportunities to win any task whatsoever owing to the availability 

of expert agents all the time. Consequently, the configuration with 𝑡K	= 25 and 𝑛K	= 1X 

was chosen for our experiments. Finally, in addition to using the Facilitator 

Configuration, we also used the following parameters in our experiments: AO = (0, 0.25, 

0.5, 0.75, 1.0), TO = (0, 0.25, 0.5, 0.75, 1.0), number of agents per simulation run is 900, 
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one task is introduced per time tick, and the number of non-zero initial capabilities for 

each agent = (1, 3, 5). This last parameter models an agent’s ability to solve tasks when it 

is first created. 
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Table 3.1 Simulation results in terms of total learning gain achieved to determine 
Facilitator Configuration.  1X means the number of agents required to complete each 

subtask of a task is 1, 2, or 3; 2X means it is 2, 4, or 6; and so forth 

𝒏𝑻	
𝒕𝑻	Number of Ticks (in 10 -2 )	

	
1 10 15 20 25 

1X 
N 0.000 3.698 4.331 4.900 6.152 
A 2.337 3.151 3.612 3.973 4.039 
E 1.038 2.377 2.694 2.878 2.909 

2X 
N 2.294 2.954 3.553 3.419 3.012 
A 1.641 2.469 2.470 2.513 2.470 
E 1.250 1.887 1.869 1.894 1.933 

3X 
N 2.177 2.315 1.230 2.971 2.627 
A 1.677 2.004 1.803 1.926 2.027 
E 1.275 1.368 1.463 1.456 1.424 

4X 
N 1.901 2.079 1.675 1.898 1.427 
A 1.534 1.429 1.434 1.570 1.802 
E 1.206 1.074 1.198 1.209 1.161 

	

	

Table 3.2 Simulation results in terms of number of tasks solved to determine Facilitator 
Configuration.  1X means the number of agents required to complete each subtask of a 

task is 1, 2, or 3; 2X means it is 2, 4, or 6; and so forth 

𝒏𝑻	
𝒕𝑻	Number of Ticks (in 10 -2 ) 

	 1	 10	 15	 20	 25	

1X 
N 0.00 3.30 8.33 10.43 7.57 
A 0.97 68.73 98.97 114.2 110.17 
E 1027.6 952.1 873.97 758.7 656.67 

2X 
N 2.80 13.80 8.27 6.70 2.97 
A 51.13 156.1 127.50 100.5 100.20 
E 1893.8 1023 783.50 600.5 540.43 

3X 
N 6.77 3.80 2.00 3.17 3.37 
A 173.33 110.0 85.57 80.60 71.70 
E 1715.2 693.7 501.93 426.8 361.03 

4X 
N 6.67 1.63 1.47 2.03 1.6 
A 150.9 52.2 51.23 43.93 46.13 
E 821.5 361 325.6 264.8 228.53 
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3.4.2 Experiments and Results 

Here we report on three experiments. The first experiment was designed to 

investigate the roles of agent openness (AO) and task openness (TO) in task completion 

and learning. More specifically, we wanted to study how agents can change their team 

forming decisions when we increase AO only, TO only and both AO and TO. Also, we 

wanted to investigate the compounding effects of combining different levels of AO and 

TO with respect to task completion and learning gain. For this experiment, we used the 

number of non-zero initial capability = 5 as it made agents more capable of solving the 

tasks but not too easily, as well as enabled average and novice agents to contribute in task 

solving. The second experiment was aimed to gain insights into how the different task 

selection strategies, as described in Section 3.3.5, would perform under different 

combinations of AO and TO by studying their performances in task completion and 

learning gain. The third experiment was designed to investigate how changing the 

number of non-zero initial capabilities would change the overall performance of the 

agents and the roles of AO and TO. 

For the above three experiments, we used the Facilitator Configuration described in 

Section 3.4.1, we set the total number of ticks per simulation to 500 to enable agents to 

make use of their learned capabilities in task solving. Also, we set 𝒞 = 20, 𝑇 = 5 for 

all ∈ 𝒯,	𝜌 = 5,  𝜂 = 0.01, 𝜀 = 0.001,	𝛽 = 0.05, 𝑎 = 0.25 and 𝑅K = 1 for our equations 

outlined in Section 3.3.4. There were 25 AO and TO combinations (Section 3.3), 9 task 

selection strategies in total, 3 values for non-zero initial capabilities options (1, 3, and 5) 

and we ran 30 times for each AO-TO-task selection strategy combination. This yielded a 

total of 20,250 simulations (25×9×3×30). 



www.manaraa.com

 Investigating Roles of AO and TO in Task Completion and Learning 

Figure 3.1 illustrates the roles of openness in ad hoc team setting.  First, as the tasks 

in the environment became more open—i.e. new tasks requiring different skills emerging 

in the environment, both task completion rate and learning gain decreased. There was a 

pronounced decrease in the total number of task completed (T) and learning gain (L) 

along the y-axis. This reinforces the hypothesis that in an ad hoc scenario, it is crucial to 

consider TO. We also see that the task completion rate decreased by 63%, 77%, 80%, and 

85% when TO increased from 0.0 to 1.0 with a step of 0.25, for AO = 0. 

Correspondingly, learning gain also decreased by 70%, 82%, 85%, and 89% at the same 

time. This decrease could be attributed to the fact that when TO increased, the agents 

needed to solve newer problems, requiring skills which might not yet be available among 

them. This led to tasks not being auctioned off, decreasing the tasks completion as well as 

opportunities for learning. We see an analogy of the observation in a disaster response 

scenario, for example. Suppose there are doctors, engineers, and firemen in the volunteer 

team, but the situation demands them to navigate through a minefield, this can severely 

limit the tasks that the team can complete. This can lead the team to abandon certain 

region beyond the minefield, thereby decreasing the tasks completion rate and learning 

gain as they do not have the necessary skills to complete those very specific jobs. 

Also from Figure 3.1, we can observe that Task Completion (T) and Learning Gain 

(L) numbers generally increased when AO increased, but only when TO > 0. Learning 

gain actually decreased and task completion remained constant when AO increased if TO 

= 0. Both of these trends go on to show that the environment in which ad hoc teams 

operate could have a more complex impact on an agent’s reasoning or decision making 
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than how they are currently being considered. When TO > 0, new tasks are introduced to 

the environment, which, on average will require some new skills to be completed. This is 

where increasing AO is beneficial, as newer agents, on average, will bring some new 

skills to the environment, which might be relevant in solving the newer tasks. This is still 

so even though, on average, the expertise/skills lost from expert agents leaving and 

replaced with new average or novice agents tended to average out the expertise gained 

from new expert agents entering the environment and average or novice agents leaving 

the environment. Consequently, when TO > 0, both task completion rate and learning 

gain generally increased with when AO increased. On the other hand, when TO = 0, no 

new type of tasks was introduced to the environment. So, increasing AO would result in 

higher net loss of capabilities on average as new agents came in to solve the same old 

problems, whereas older agents that would have solved tasks, and as a result learned 

some capabilities, would leave the environment. This behavior was somewhat 

unexpected, and went on to show the complexity of considering environmental openness 

in ad hoc scenario. This is why we observe that introducing new agents—i.e., increasing 

AO did not necessarily help learning if newer tasks were not being introduced to 

“motivate” the agents. Hence learning gain (L) decreased when AO increased in Region 

III, but task completion rate was not affected as there was enough expertise in the 

environment to solve all the tasks (500 in total). 
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Figure 3.1 Task selection strategy with best task completion and learning gain per AO-
TO combination with the number of non-zero initial capabilities = 5. S = best performing 

task selection strategy, T = # of total tasks solved, L = total learning gain. 
	

 Investigating Task Selection Strategies’ Performance in Environment with 

Different AO and TO 

As per Figure 3.1, it is clear that no one task selection strategy dominates all 

situations. For different combinations of AO and TO, the best task selection strategy 

varies. In general, we can divide our observations of the results in Figure 1 into four 

regions: Region I: 0.25 ≤ 𝐴𝑂 ≤ 1 and 0.25 ≤ 	𝑇𝑂 ≤ 0.75; Region II: 0.25 ≤ 𝐴𝑂 ≤ 1 

and TO = 1; Region III: 0 ≤ 𝐴𝑂 ≤ 1 and 𝑇𝑂 = 0; Region IV: 𝐴𝑂 = 0 and 0.25 ≤

𝑇𝑂 ≤ 1. First, in Region I, when the tasks in the environment became more open but not 

yet completely open (i.e., 𝑇𝑂 = 1), and the agents in the environment became more open, 

we observed that the strategy MTPU_L<S—note that other strategies (MTPU+AO and 

MTPU+TO) shown in Region I all were reduced to the same Strategy MTPU_L<S—



www.manaraa.com

which weighs potential learning utility (𝑤� = 0.25) smaller than the potential tasks 

solving utility (𝑤y = 0.75), performed the best. This result shows that as both agents and 

tasks in the environment are open, the learning utility plays a less important role than 

tasks solving utility in terms of tasks completion. When AO is non-zero, new agents are 

introduced and old agents leave with their learned capabilities. As a result, agents have 

fewer opportunities to use their new learned capabilities to solve tasks before they leave. 

Combined with the fact that new, previously unknown tasks were also introduced into the 

environment, the learned capabilities may not be used for these new introduced tasks. 

Thus, MTPU_L<S, by emphasizing task solving more than learning, was able to perform 

better than other strategies. 

Second, in Region II, when tasks in the environment were completely open, the 

observed best strategy is MTPU+TO, which takes only TO into the account when 

estimating total potential utility. Since 𝑇𝑂 = 1 in this region, the weight of learning 

utility became 0, as a result, this strategy actually only considered the tasks solving 

utility. Upon further consideration, this result was actually expected as new tasks were 

always different with previously seen tasks when 𝑇𝑂 = 1, the capabilities agents learned 

from previously seen tasks were more likely to be not applicable for the new, unknown 

tasks. Hence considering learning did not necessarily benefit the potential rewards in the 

future and the strategy MTPU+TO, which would maximize the immediate reward in this 

situation, turned out to be the best performing one.  

Third, in Region III, we observed that the best strategy varied. Actually, our 

simulation data shows that there were no best strategies for any AO-TO combinations in 

this region. In this region, though not shown in the graph, all strategies indeed performed 



www.manaraa.com

equally well, except for Strategy 7 (MTPU+ATO). The difference between the best 

performing strategies and the worst performing strategies in terms of task completion was 

within 0.001% and the difference in terms learning was within 0.01% for all AO-TO 

combinations in this region for Strategies 1-6. However, for Strategy 7, recall that at 

𝐴𝑂 = 0, 𝑇𝑂 = 0, the weights for considering task completion and learning would be 0 

and thus Strategy 7 ended up with agents not bidding for any task. Note also that when 

the tasks were closed, i.e., 𝑇𝑂 = 0, and no new tasks were introduced into the 

environment, agents were solving the same types of tasks all the time; hence every task 

selection strategy produced very similar results for every task.  

Fourth, in Region IV, where 𝐴𝑂 = 0 and TO > 0, the best strategies were 

MTPU+AO (Strategy 5) and MTPU+ATO (Strategy 7). Notice that in this region, 𝐴𝑂 =

0, which made both strategies simplify to consider only the utilities from solving the 

tasks. In this region, agents were closed, i.e., no agents would leave and no new agents 

would enter the environment. Hence agents did not have to worry about agents with 

expertise from whom it could learn useful skills becoming unavailable. Indeed, the 

expertise would always stay in the environment as reliable resources in such a situation. 

Thus, agents focusing getting more immediate rewards would be able to leverage that—

as in Strategies 5 and 7— to their advantage, as observed in this region of Figure 1. 

Therefore, when 𝐴𝑂 = 0 and 𝑇𝑂 > 0, the task selecting strategies which put emphasis 

on the utilities from solving the tasks such as MTPU+AO and MTPU+ATO were the best 

choices. 

Based on these observations, we see that agents considering AO and TO in their 

task selection strategies could indeed improve their utilities, that these agents could 
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leverage the dynamics in the environment to their advantage in ad hoc team formation. 

However, a key issue not addressed in our design is that right now, we used the 

“informed perception” of AO and TO. What would happen if agents were required to 

perceive both openness on their own? How would they bootstrap their task selection 

when they did not have sufficient data to model both openness? Or would agents give up 

on using AO and TO in their strategies if they realized they could not perceive them 

accurately due to incomplete information? We aim to investigate different ways of 

perceiving openness in our future work. 

 Investigating the Impact of Number of Nonzero Initial Capabilities 

How would the agents perform differently if they were created with different 

number of nonzero initial capabilities?  That is, if they were more capable or less capable 

at the start of the simulation, would different task selection strategies perform differently 

and would the impacts of AO and TO be mitigated or magnified?   

For this experiment, we refer to Figure 3.1 where the number of nonzero initial 

capabilities was 5—i.e., with more capable agents—and Figure 3.2 where it was 1—i.e., 

with less capable agents.  Note that we also ran a set of simulations using 3 nonzero 

initial capabilities per agent, but observed that its results were essentially the same as 

those shown in Figure 3.1.  

Comparing Figures 3.1 and 3.2, we see two key differences.  First, when tasks were 

closed, i.e., 𝑇𝑂 = 0, along the x-axis, as agents became more open, there was a 

consistent increase in T observed in Figure 3.2 but not in Figure 3.1.  The reason for this 

increase is because agents were solving the same type of tasks, and due to the fact that the 
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environment lacked expertise—as agents in Figure 3.2 were less capable, new agents 

coming into the environment could bring in capabilities that were not present in the 

environment. This would help the agents solve some previously unsolvable tasks.  

Second, in Region I, while steady trends were observed in Figure 3.1, it is not so in 

Figure 3.2.  For example, we see that both S and L increased as AO increased, and both 

decreased as TO increased, in Figure 3.1.  But in Figure 3.2, such trends were not 

apparent. We speculate that because of low-capability agents in Figure 3.2, due to the 

lack of opportunities to qualify for and thus solve tasks, the agents also did not have 

sufficient opportunities to learn.  And thus, this also implies that considering AO and TO 

in tasks selection strategies might not be worthwhile. 

Third, where 𝑇𝑂 = 0.25, and 𝐴𝑂 = (0.25, 0.5, 0.75, 1), MTPU_L<S (Strategy 

4.2)—note that Strategy 5 reduced to Strategy 4.2 at AO = 0.25—performed best in 

Figure 3.1 whereas MLO (Strategy 2) did so in Figure 3.2. Upon further consideration, 

we realize that when the number of non-zero initial capabilities = 1, as TO was 

sufficiently low (e.g., 0.25), agents tried to learn because there was a relatively higher 

chance of seeing old tasks in the environment, and improving skills that were required for 

those tasks, which in turn would improve their chance of actually solving the tasks. Thus, 

agents selecting tasks emphasizing learning performed better as in Strategy 2 (MLO). On 

the other hand, when the number of non-zero initial capabilities = 5, even when TO was 

very low, agents still had a relatively higher variety of skills, enabling them to 

concentrate on solving tasks rather than learning. This is reflected by MTPU_L<S 

(Strategy 4.2), which focuses more on task solving (75%) than on learning (25%).  



www.manaraa.com

 

Figure 3.2 Task selection strategy with best task completion and Learning gain per AO-
TO combination with number of non-zero initial capabilities = 1. S = best performing 

task selection strategy, T = # of total tasks solved, L = total learning gain. 
	

3.5 Conclusions 

We have developed an ad hoc team formation framework that takes into account 

learning and task solving under varying degrees of environmental openness. The learning 

involved is based on “learning by observation” and “learning by doing” modeling 

learning theory on the zone of proximal distance. An additional emphasis here is about 

how an agent can choose a subtask to do such that joining a team to help complete an 

overall task allows the agent to position itself to gain from learning, from doing the 

subtask and from observing others working in the team. Furthermore, we have devised 

mechanisms to simulate agent and task openness. Running simulations of this framework, 

we were able to study various effects of considering agent openness (AO) and task 

openness (TO) in ad-hoc team formation. We were able to see that AO and TO are 
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important in ad hoc team formation. Based on how the task completion rate as well as 

learning gain varied with different levels of AO and TO, it is clear that these two factors 

should be considered to more comprehensively represent real world ad hoc teams. First, 

AO and TO change the way teams are formed. With environment being open, agents 

need to factor in the possibility of new agents and tasks entering the environment in order 

to make better decisions in terms of joining a team. Second, AO impacts learning, with 

the introduction of new agents specially boosting the learning when new tasks are also 

being introduced into the environment. TO makes it difficult for agents to solve the tasks. 

The possibility of new tasks emerging in the environment means newer agents entering 

the environment can be helpful as they could bring newer capabilities.  

Having now established the importance of AO and TO, gaining insights into the 

relationship between the two factors, and investigating the effectiveness of several 

openness-based task selection strategies, we have identified several key next steps to 

continue with this line of research.  First, we will explore more realistic ways to perceive 

openness—as our “informed perception” scenario where agents know both AO and TO 

exactly, is not ideal—such as (1) NoSharing, where agents model on their own without 

sharing information with each other, (2) Sharing, where agents share information to 

model the openness together. Second, as reported in Section 3.4.2.1, we see for 𝑇𝑂 = 0, 

increasing AO decreases the learning gain. Furthermore, as reported in Section 3.4.2.3, 

we see no clear effect of increasing AO in Regions I and II from Figure 2 We need to 

further explore this emergent behavior to better understand the complex relationship 

between AO and TO in ad hoc teams. Third, we will consider the impact of both teaching 

and learning while modeling agent’s behavior, particularly incorporating the fundamental 



www.manaraa.com

game-theoretic work from (Stone, Gan, et al., 2010). This will require agents to consider 

the potential gain from teaching another agent, as opposed to only considering potential 

gain from learning from other. Fourth, we will consider agent reliability in terms of agent 

possibly failing to complete tasks to incorporate (perceived) solution robustness into 

agent reasoning when bidding for tasks, with little or no knowledge of the capabilities of 

other agents in the ad hoc team formation environment. 
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Chapter 4: Collaborative Human Task Assignment for Open Systems 

4.1 Introduction 

Intelligent agents and multiagent systems have been used in a wide variety of 

application to support human activities and decision making.  For instance, there are 

autonomous personal assistants that support their users in carrying out tasks, managing 

schedules, and so forth.  For example, Chalupsky et al. (2002) and Tambe et al. (2008) 

described Electric Elves that helped humans in accomplishing organizational activities, 

such as rescheduling meetings, selecting presenters for research meetings, tracking 

people’s locations, and organizing lunch meetings.  Myers et al. (2007) described a 

system that relieved the user of routine tasks and intervened in situations where cognitive 

overload leads to oversights or mistakes by the user. Berry et al. (2006) described a 

personalized agent called PTIME for time management and meeting scheduling as part of 

a larger assistive agent system called CALO. There are also collaboration support 

systems aimed at identifying for human users other human users to help with problem 

solving, teamwork, and learning. For example, Vassileva et al. (2015) described PHelpS 

that helped workers find appropriate helpers among their peers when they were 

encountering problems while interacting with their database, and I-Help that matched 

students with their peer helpers for university courses. Khandaker et al. (2011) described 

computer-supported collaborative learning applications called I-MINDS and 

ClassroomWiki to form optimal student teams based on students’ tracked and modeled 

behaviors. Finally, Sklar and Richard (2006) pointed out, in addition to peer learning 

agents, that there were also pedagogical agents and demonstrating agents used in human 

learning systems. Pedagogical agents (Heidig & Clarebout, 2011) are designed to 
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facilitate learner motivation and learning.  They act as tutors and model student learner 

profiles and the current state of knowledge to customize their interactions accordingly.  

One particular problem that agents are well suited to assist human users with is 

collaborative task assignment, where there exist a set of human users and a set of tasks 

that require multiple people to combine their individual skills and expertise to work 

together towards a common, temporary goal, earning each participant a share of a joint 

reward if the task is accomplished successfully.  In such a problem, a multiagent solution 

is advantageous because agents representing individual human users can first model the 

abilities of their assigned users, then find and acquire tasks that best benefit their users, 

while at the same time fairly allocate tasks across all users so that the overall system also 

benefits.  For example, agent-based human collaborative task assignment could be used 

to (1) form temporary teams of freelance workers (e.g., independent software developers 

or artists) to satisfy contracts from companies lacking the internal expertise to accomplish 

tasks (e.g., developing particular pieces of software or graphic design), (2) combine the 

expertise and skills of office workers across divisions within large companies to 

accomplish tasks needed by the company, or (3) further improve matching students to 

peer-based learning tasks in computer-aided education. 

However, collaborative task assignment becomes much more challenging within 

dynamic, open environments where the system itself changes due to entities coming and 

going over time.  In particular, we consider two types of openness affecting the 

collaborative task assignment problem.  First, agent openness occurs whenever the set of 

human agents changes as people join and leave the environment over time.  This causes 

expertise and skills needed to accomplish tasks to become more or less prevalent, 
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affecting the ability of software agents to find suitable people to accomplish each task.  

For instance, if an expert and skilled person leaves the environment, then tasks that could 

be successfully accomplished in the past might not be possible anymore.  Second, task 

openness occurs whenever the set of collaborative tasks changes: both new tasks 

requiring different expertise and skills appear and older tasks disappear over time.  

People specializing in certain types of tasks might need to adapt what they work on if 

those tasks disappear, while other people who had difficulty contributing might become 

more useful as new tasks related to their expertise and skills appear.   

Both types of openness cause uncertainty within the collaborative task assignment 

problem, as software agents do not know which tasks might be successfully 

accomplished now or in the future due to fluctuations in both the set of people needed to 

complete tasks, as well as the set of tasks itself.  Given that there might be multiple tasks 

each person could contribute to at any point in time, yet a person can only contribute to 

one task at a time, openness makes the problem of selecting appropriate tasks for human 

users more difficult for software agents. 

In order to address this difficulty, we propose a solution integrating two important 

factors into agent reasoning within an auction protocol used to fairly assign people to 

collaborative tasks.  First, software agents model the uncertainty in task 

accomplishment caused by agent and task openness.  In particular, agents learn 

probabilistic models of the likelihood that both (1) its bid will be accepted and thus its 

person matched to a particular task, and (2) enough people with appropriate expertise and 

skills will be available so that the task is successfully accomplished.  If either the agent’s 

bid fails, or enough people cannot be found to satisfy a particular task, then the agent’s 
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user will not complete a task, reducing the total reward earned by the user.  Over a 

sequence of available tasks, the agent then uses this probabilistic model to bid on tasks 

that will maximize the users’ expected rewards over time. 

Second, to further improve reward maximization over time in spite of environment 

openness, we are inspired by the fact that the expertise and skills of human users are not 

static, but can improve over time through human learning when they complete tasks and 

interact during teamwork.  In particular, we incorporate realistic models combining two 

types of human learning: (1) learning by doing (Henderson, 1984; Leibowitz, et al., 2010; 

Shell et al., 2010; Ying, 1967) where people gain ability through experience 

accomplishing tasks, and (2) learning by observation (Bandura, 1986, 2004), where 

people gain ability by watching collaborators perform activities within the same task that 

are currently too difficult for the user. Such models are factored into the agent’s decision 

about how to bid on tasks, helping each agent choose tasks that will allow its user to 

improve so that it earns greater future rewards.  In short, we see that factoring in human 

learning is especially important in open environments, as learning is necessary to 

counter the possible loss of expertise and skills within the system caused by agent 

openness, as well as to develop abilities to complete a wider range of tasks introduced 

through task openness.   

Using a series of experiments, our empirical results demonstrate: (1) the negative 

effects on collaborative task assignment caused by both agent and task openness, 

necessitating a solution for handling these challenging properties of real-world 

environments, (2) the benefits of reasoning about uncertainty caused by openness when 

finding and selecting tasks for human users to complete, including greater task 



www.manaraa.com

accomplishment, and (3) the improvements in cumulative rewards earned by users caused 

by modeling human learning to promote the non-myopic maximization of task rewards 

over uncertain, future tasks.  

4.2 Collaborative Task Assignment Problem 

One application of intelligent agents to assist human users is in collaborative task 

assignment, where software agents are responsible for finding and acquiring tasks for 

their human users to complete in collaborative teams.  In this section, we describe (1) 

how we model the collaborative task problem, and (2) how we refine this model to 

account for the complexities caused by environment openness common to real-world 

collaborative team assignment problems.  In Section 4.3, we will describe how agents 

model human learning so that they can reason about the improvements in their users’ 

expertise and skills over time. 

4.2.1 Problem Model 

Environments of the collaborative task assignment problem contain three main 

components: (1) a set of tasks 𝒯, (2) a set of human users 𝐻 that must collaborate to 

complete tasks, and (3) a set of software agents 𝐴, where each agent 𝑎« ∈ 𝐴 is assigned 

to a unique human user ℎ ∈ 𝐻 and is responsible for acquiring tasks for the human ℎ to 

complete.  

We define 𝒯 be a set of all tasks in the environment.  Each task 𝑇 ∈ 𝒯 is composed 

of multiple subtasks that must be completed by human users. We use 𝜏 to denote a 

subtask, and represent each task as a set of subtasks: 𝑇 = {𝜏H, 𝜏I,⋯ , 𝜏 K }.  
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Let 𝒞 = 𝑐H, 𝑐I, … , 𝑐 P  denote the set of all capabilities or unique skills that human 

users could have. For example, in a freelance software developer environment, there 

could be capabilities defining users’ (i.e., freelance programmers’) abilities to program in 

the Java programming language, to write documentation, to design systems, etc.  In 

contrast, in an office setting, there could be capabilities defining users’ abilities to send 

emails, to schedule meetings, to order supplies, etc. 

Each subtask	𝜏 requires exactly one capability 𝑐 from the set 𝒞 to complete the 

subtask. Each subtask also has a quality threshold 𝑞𝑡 ∈ (0,1] defining how much 

expertise in the corresponding capability 𝑐 is needed to complete the subtask.  Finally, 

each subtask also has a number 𝑛 ∈ ℕ defining the number of people needed to complete 

the subtask.  Combining this definition of a subtask, we represent each subtask 𝜏Q as the 

triple 𝑐Q, 𝑞𝑡Q, 𝑛Q .   For notational convenience, we override the notation of a subtask 𝜏Q 

to denote that it requires 𝑐Q ∈ 𝒞. 

Furthermore, we define 𝐻 to be a set of human users in the environment.  Each 

human user ℎ ∈ 𝐻 is described by a vector 𝒄𝒂𝒑𝒉 = 𝑐𝑎𝑝«,H, 𝑐𝑎𝑝«,I,⋯ , 𝑐𝑎𝑝«,|𝒞| ∈

[0,1]|𝒞| specifying her expertise with respect to each capability, where 𝑐𝑎𝑝«,Q, denotes 

the expertise of human ℎ with respect to the 𝑘-th capability 𝑐Q. Over time, each human 

user can improve her capabilities through learning, causing users to be capable of 

completing a greater number of possible subtasks over time, and thus act as better 

teammates for collaborative tasks.  We describe human learning in more detail in Section 

4.3 below.  
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Within the collaborative task problem, we add a constraint to model the restriction 

of many real-world environments that a human user can only commit to working on a 

single collaborative task at a time.  This enables the human to focus all of her energies on 

a single objective at once.  Thus, each user’s agent does not over-commit its user to 

multiple tasks and thus avoid having to deal with multiple teams, which could possibly 

risk task failure due to overly busy users, thereby benefitting the user’s collaborative 

team.  However, users can be assigned to multiple subtasks within the same task, if she 

has the appropriate expertise in 𝒄𝒂𝒑𝒉.  

Human users are motivated to complete as many tasks as possible, as each task 𝑇 

provides a reward 𝑅 ℎ, 𝑇 ∈ ℝ to the human user.  Rewards are only earned if the task is 

successfully completed, meaning that each subtask 𝜏Q ∈ 𝑇 is completed by the required 

number of users 𝑛Q.  For example, in a freelance software developer environment, these 

rewards could be monetary payments for a collaborative team of developers finishing a 

software project.  Since tasks are collaborative and different users contribute differently 

to tasks, a task’s rewards are shared from a total task reward 𝑅K based on a user’s 

contribution to that task: 

																													𝑅 ℎ, 𝑇 = ° «,{g ⋅�lg
�g⋅𝑞𝑡𝑇

𝑅K{g∈K 		 	 						(4.1)	

where 𝛿 ℎ, 𝜏Q  = 1 if user ℎ was assigned to subtask 𝜏Q, else 0, and 𝑅 ℎ, 𝑇 = 𝑅K²∈¤ . 

Over time, the tasks acquired by an agent for its human user ℎ form a sequence 𝑇«l l³´
∞ , 

where 𝑇«l denotes the task human ℎ was assigned to at time 𝑡  (and 𝑇«l = ∅ if ℎ is not 

assigned to a task at time 𝑡 with 𝑅 ℎ, ∅ = 0).  Ultimately, user ℎ	desires to maximize her 

cumulative rewards over the entire sequence of tasks: 
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max 𝑅(ℎ, 𝑇«l)¶
�³´               (4.2) 

Thus, the objective of software agent 𝑎« is to find and assign its user ℎ to a sequence of 

tasks over time that maximizes this objective function. 

In order to fairly assign tasks to their human users, software agents compete in a 

contract net-based (Smith, 1980) auction protocol.  In this protocol, a subset of the 

available tasks 𝔗 ⊆ 𝒯 are offered for auction and the descriptions of tasks	𝑇 ∈ 𝔗 are 

communicated to all software agents.  As described above, agents are constrained to 

bidding on only a single task to avoid over-committing their human user to multiple 

collaborative teams (since users cannot back out of tasks if they win multiple bids, which 

would otherwise cause such tasks to fail).  Thus, each agent must select a single task to 

bid on for its user.  To insure fair assignment of tasks for the benefit of the overall 

system, the amount each agent 𝑎« bids1 for a task is the capabilities of its user 𝒄𝒂𝒑𝒉.  

The auctioneer—representing the system and not any particular human user—

allocates subtasks to agents and their users in a greedy way. For each task, the auctioneer 

assigns each subtask 𝜏Q ∈ 𝑇 to the 𝑛Q agents that bid on the task T with the highest user 

capability 𝑐𝑎𝑝«,Q. In the case that there are not enough qualifying users for a subtask, 

then this subtask will not be assigned, thus the entire task will not be auctioned off. In 

other words, it is possible for an agent to win a bid for its user (matching the user to at 

least one subtask in the task), yet the task as a whole will not be auctioned off (and thus 

no collaborative team formed) if there are not enough qualifying users for every subtask 

of that task.  

																																																								
1 We assume here that the capabilities of a human user 𝒄𝒂𝒑𝒉 are known by an agent 𝑎« .  Depending on the domain, this knowledge 

could be acquired by 𝑎«	interacting with its human user (e.g., to administer tests) or with other users (e.g., feedback from an expert). 
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4.2.2 Modeling Environment Openness 

As introduced in Section 4.1, many real-world applications of collaborative task 

allocation occur in complex environments that also contain the challenging property of 

environment openness.  In this thesis, we consider two types of openness: both (1) agent 

openness and (2) task openness.  We now describe how we model these types of 

openness in task allocation problem. 

Agent Openness First, agent openness represents the phenomenon that human 

users (who are also intelligent, non-artificial agents) join and leave the environment over 

time.  For example, in a freelance software development environment, individual 

developers might leave software companies to do independent freelance work instead, 

whereas others might switch from being freelance workers to working solely for a 

software company.  Likewise, in an office worker environment, the company might hire 

new employees and let others go over time.  This definition of agent openness is closely 

related to the definition used in the intelligent agents and multiagent systems literature for 

software or hardware agents that join and leave complex environments over time (e.g., 

Huynh et al., 2006; Jamroga et al., 2013; Pinyol & Sabater-Mir, 2013; Shehory, 2001).   

Within our problem model, the set of human users 𝐻 (and their corresponding 

software agents 𝐴) is non-stationary and changes over time.  At any point in time, some 

users might be removed and others might be added.  As a result, these sets are extended 

to reflect the current available humans (and software agents) at a particular time 𝑡 as 𝐻l 

(and 𝐴l).  We assume that agents are not aware of which of their peers are around at any 

point in time, nor that the agents even know how many peers they have. 
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The primary implication of agent openness is that as a new human user ℎ joins the 

environment, new expertise 𝒄𝒂𝒑𝒉 becomes available to assist with completing 

collaborative tasks.  However, as an existing human user ℎ leaves the environment, so too 

does their expertise 𝒄𝒂𝒑𝒉, potentially making it more difficult for collaborative tasks to 

be completed.  This is especially problematic since human users are capable of learning 

to improve their expertise over time, so the amount of overall expertise leaving the 

system due to openness could exceed the amount of expertise joining the system. 

Task Openness Second, task openness represents the phenomenon that the set of 

tasks that require collaboration to solve could also change.  For example, in a freelance 

software development environment, changes in programming paradigms and the types of 

software needed by clients would cause different collaborative tasks to exist over time.  

Moreover, in an office worker environment, different seasonal activities of the company 

could require different tasks over time.   

Within our problem model, the overall set of tasks 𝒯is non-stationary and changes 

over time.  At any point in time, some tasks might be removed and others might be 

added.  As a result, this set is extended to reflect the current possible tasks at a particular 

time 𝑡 as 𝒯l. 

The primary implication of task openness is that as the set of tasks changes over 

time, different expertise and capabilities are required.  As easier tasks become available 

or difficult tasks disappear, more users will be qualified to complete tasks, whereas when 

more difficult tasks become available or easy tasks disappear, then fewer users will be 

qualified to complete tasks.  Each of these phenomena affects the ability of agents to 
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acquire tasks for their users: the former creates more competition between agents for 

tasks, whereas the latter makes it more difficult to find a suitable task for a user. 

Overall, both task openness and agent openness make it very difficult for agents to 

select tasks for their users that maximize long-term rewards as they introduce uncertainty 

into both (1) whether the agent will win a bid for a task, which is vital since agents are 

constrained to a single bid per auction, and (2) what tasks will be available in the future, 

and thus what types of capabilities its users will need to learn to complete those tasks.   

Of note, our work on agent and task openness within a problem model such as that 

described in Section 4.2.1 is similar to and builds upon prior research by Jumadinova et 

al. (2014).  In particular, their research explored the impacts of agent and task openness 

when agents work together in ad hoc teams (similar to collaborative human task 

assignment) under the assumption of simple rules for forming teams based on agent 

capabilities. Our research, on the other hand, proposes a solution for directly reasoning 

about the uncertainties caused by agent and task openness, then maximizes the rewards 

received from collaborative tasks.  We also add principled computational models of 

human learning based on an extensive literature review to improve how agents reason 

about the benefits of task accomplishment for human users.  

4.3 Human Learning Model 

To model human learning, we focus on two particular learning paradigms: learning 

by doing and learning by observation.   

Learning By Doing.  Learning by doing can be viewed from two perspectives.  

From an economic theory viewpoint, it is the process of performing a task or carrying out 
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an action, and learning from that before performing the same task again.  It is considered 

an adaptive approach to multi-period decision making (Ying, 1967).  From a cognitive 

learning viewpoint, it can be seen as repetition, as outlined in the Unified Learning Model 

(ULM) (Shell et al., 2010), where it is a process by which knowledge is reinforced 

through repeated access, exposure, or application.  Newell and Rosenbloom (1993) stated 

that “almost always, practice brings improvement, and more practice brings more 

improvement.”   

To model learning by doing in our problem, we borrow clues from experience 

curve effects (Henderson, 1984) to derive the learning gain function for a human user 

performing learning by doing, and learning curve to characterize different types of tasks.  

The experience curve effects indicate that over time, the more units of a good that a 

company produces, the average cost per unit is lowered, as the people with the company 

accumulate experience and expertise to better produce such good.  Meanwhile, depending 

on the skills or knowledge that are required to perform or master a task, there are 

different learning curves.  For example, learning how to perform some skills might be 

quick at first, but difficult to master (e.g., playing strategic games such as Go or chess), 

whereas others skills might have slow learning at first, then faster with more experience 

(e.g., learning to ride a bicycle or swim).  In short, we see that different task types may 

impose different learning curves, such as power law, linear, exponential, and sigmoidal 

(Leibowitz et al., 2010; Newell & Rosenbloom, 1993). In our problem, we use the 

exponential learning equation for success-based learning outlined by Leibowitz et al. 

(2010).  According to Leibowitz et al., a learning equation can be modeled as: 

                                𝑝� = 𝑝¶ − 𝑝¶ − 𝑝 ∙ 𝑒�»∙y�        (4.3) 
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where p is the performance measure, n is akin to n-th learning episode, such that 𝑝¶ is 

the maximum infinite-horizon performance measure achievable, 𝑝´ is the initial 

performance measure, 𝑆� is the accumulated sum of all previous performances until, but 

not including, the nth episode, and 𝛼 is a constant rate coefficient.  Mapping these to our 

problem: 𝑝´ refers to a user ℎ’s initial expertise for a particular capability, 𝑐𝑎𝑝«,Q; 𝑝� is 

the current expertise of ℎ after n-times performing that capability; and 𝑆� = 𝑝V��H
V³´ .  

The change in the performance measure, or learning gain, according to Leibowitz et al. 

(2010), is: 

                                      𝑝 = 𝛼𝑝 ∙ 𝑝¶ − 𝑝         (4.4) 

The constant rate coefficient 𝛼 caps the amount of learning gain at each episode.  (Note 

that we will use 𝛼�� to indicate the rate is associated with learning-by-doing.) The 

general shape of this curve is a (concave downward) parabola: when a user’s expertise is 

low, it learns a little; as its expertise grows, it starts to learn more with a higher learning 

gain; then after it peaks, it starts to learn less as its maximum expertise is reached.  For 

simpler tasks, the initial gain is higher (or more steep); and for more complex tasks, the 

initial gain is lower (Roediger & Smith, 2012; Wifall et al., 2014).  Thus, for a user ℎ’s 

gain via learning by doing for performing a subtask with a learning curve capped by 𝛼��, 

using its capability	𝑐𝑎𝑝«,Q, we have: 

           𝛥��𝑐𝑎𝑝«,Q = 𝑐𝑎𝑝«,Q = 𝛼�� ∙ 𝑐𝑎𝑝«,Q ∙ 1 − 𝑐𝑎𝑝«,Q        (4.5) 

In summary, a user’s gain in learning by doing is determined by its current 

capability, the learning curve of the capability being learned, and the total amount of 

learning depends on the number of times that it has performed the capability.  
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Learning By Observation.  Bandura (2004) described observational learning (or 

learning by observation) as knowledge acquisition by learning from the examples 

provided by others.   Bandura’s social cognitive learning theory (Bandura, 1986) 

indicated that there are four stages involved in observational learning: attention, retention 

or memory, initiation or reproduction, and motivation.   

In our problem, we model learning by observation in the following manner.  A user 

can learn from observing other users only when they are in the same team collaboratively 

solving a task.  This allows us to model a user’s attention. To ensure retention (or 

memory), each user updates its capability after task execution.  Most importantly, to 

model initiation (or reproduction), “observers must be physically and intellectually 

capable of producing the act.” That is, even when an observer user receives the stimuli 

from its observation of the performing user, reproducing the observed action may involve 

skills that the user does not yet have.  Thus, we model the learning gain function of user 

ℎ observing a teammate 𝑗 performing subtask 𝜏a as follows: 

                       𝛥�o_𝑐𝑎𝑝«,a = 		0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑝 0 ≤ 𝑞𝑡a − 𝑐𝑎𝑝«,a < 𝛽        (4.6) 

where 𝛽 is the threshold under which 𝑞𝑡a − 𝑐𝑎𝑝«,a	is small enough for learning by 

observation to take place, and 𝑝 for observational learning is modeled similarly from Eqs. 

4.3-4.4 above: 

            𝑝 = 𝛼�o_ ∙ 𝑞𝑡a − 𝑐𝑎𝑝«,a ∙ 𝛽 − 𝑞𝑡a − 𝑐𝑎𝑝«,a        (4.7) 

where 𝛼�o_ refers to the cap for the corresponding learning curve for observational 

learning for that capability.  Note that it is possible for a capability to have different 
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values of 𝛼�� and 𝛼�o_ as a capability could be easier when it is learned by doing than 

when it is learned by observation and vice versa. In summary, gain from learning by 

observation is zero if a user observes a subtask being performed that requires a much 

higher level of capability (≥ 𝛽).  Also, if a user is already capable of performing the 

subtask, then it does not learn anymore from observing another user performing the 

subtask.  Further, a user’s learning gain from observational learning follows the same 

sigmoidal curve as for learning by doing, albeit stunted by 𝛽. 

4.4 Solution 

Given the above descriptions of both the collaborative task assignment problem and 

a mathematical approach for modeling human learning within collaborative tasks, we 

describe our solution for agent-based reasoning to acquire tasks for human users. 

4.4.1 Estimating Expected Task Rewards 

Recall that in the collaborative task assignment problem, an agent 𝑎«’s objective is 

to maximize the cumulative reward (Eq. 4.2) earned by its user ℎ over the sequence of 

tasks acquired by 𝑎« through bidding in the task auction. This requires non-myopic 

planning. 

However, due to uncertainty caused by agent openness, estimating the reward a 

user would earn from a particular task 𝑅(ℎ, 𝑇) if the user were assigned to the task and it 

were completed is difficult because the agent does not know which other users exist in 

the environment and thus what bids their agents would make and who would be assigned 

to different subtasks 𝜏Q ∈ 𝑇.   
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Instead, the agent needs to estimate an expected task reward that accounts for this 

uncertainty.  We can model this as: 

                      𝐸 𝑅 ℎ, 𝑇 = ÂÃ {g ⋅�lg
�g⋅�lg

𝑅K{g∈K          (4.8) 

where 𝑃« 𝜏Q  represents the probability that user ℎ is assigned to subtask 𝜏Q 

(assuming that the user is assigned to task 𝑇).  Unfortunately, this probability is neither 

directly measurable nor computable due to agent openness.   

However, we can rely on the following intuition to address this issue.  Given the 

procedure followed by the auctioneer (c.f., Section 4.2.1), we know that the users with 

the highest capability 𝑐𝑎𝑝«,Q are going to be assigned to subtask 𝜏Q.  Hence, the higher a 

user ℎ’s capability 𝑐𝑎𝑝«,Q, the more likely it is to be selected to perform subtask 𝜏Q.    

Thus, we know that  

                𝑃« 𝜏Q ∝ 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q = max 0, 𝑐𝑎𝑝«,Q − 𝑞𝑡Q         (4.9)  

where 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q  represents how much more expertise ℎ possesses than required by 𝜏Q.  

Therefore, we know that maximizing 

                     𝐸 𝑅 ℎ, 𝑇 = �Vbb «,{g ⋅�lg
�g⋅�lg

𝑅K{g∈K                     (4.10) 

also maximizes Eq. 4.8.  So, we use Eq. 4.10 to estimate expected task rewards 

𝐸 𝑅 ℎ, 𝑇 . 

4.4.2 Approximating Future Task Rewards 

Maximizing a user’s cumulative task rewards (Eq. 4.2) requires not only acquiring 

the task that maximizes the user’s current reward when bidding on tasks, but also 
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maximizing future rewards.  Unfortunately, estimating future rewards for the human user 

𝑅	(ℎ, 𝑇«l)¶
�³H  is even more challenging due to task openness: the agent does not know 

what tasks will be available in the future.  At the same time, the agent needs to consider 

future rewards when deciding how to bid on current tasks because completing a task now 

enables the agent’s human user to learn (both by doing and by observation) to improve 

her abilities to complete future tasks.   

Although learning thus couples future rewards to current decisions—making 

planning more challenging as a result of task openness—our solution instead leverages 

this property to approximate future task rewards.   

Similar to our intuition in Section 4.4.1 to address expected task rewards, we note 

that better learning now by a human user will lead to additional opportunities to complete 

tasks in the future as the user becomes more and more qualified to complete a wider 

range of possible future tasks.  Thus, tasks provide a total utility to users that consists of 

two parts: (1) rewards for completing the task, and (2) expertise gain in user capabilities 

that will lead to future rewards.  From this perspective, we can model the total utility of a 

task 𝑇	for a user ℎ as: 

                        𝑈 ℎ, 𝑇 = 𝑅 ℎ, 𝑇 + 𝑈�`?p�(ℎ, 𝑇)      (4.11) 

Given the computational model for human learning provided in Section 4.3 

(defined in the literature on human learning), an agent models the utility of expertise gain 

in its human user from a task: 

            𝑈�`?p� ℎ, 𝑇 = H
I
𝑈��Æ� ℎ, 𝑇 + 𝑈��no_(ℎ, 𝑇)       (4.12) 
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which balances learning by doing subtask 𝜏Q and learning by observing other subtasks 

𝜏a ∈ 𝑇 based on Eqs. 4.5-4.6. 

Once again, due to uncertainty in the environment caused by agent openness, an 

agent will not know which subtask(s) its user will be responsible for if she is assigned to 

a task, so the agent needs to compute expected learning and total utilities: 

                  𝐸 𝑈 ℎ, 𝑇 = 𝐸 𝑅 ℎ, 𝑇 + 𝐸 𝑈�`?p� ℎ, 𝑇         (4.13) 

    𝐸 𝑈�`?p� ℎ, 𝑇 = H
I
𝐸 𝑈��Æ�(ℎ, 𝑇) + H

I
𝐸 𝑈��no_(ℎ, 𝑇)       (4.14) 

           𝐸 𝑈��Æ� ℎ, 𝑇 = 𝑑𝑖{g∈K 𝑓𝑓 ℎ, 𝜏Q 𝛥��𝑐𝑎𝑝«,Q       (4.15) 

       𝐸 𝑈��no_ ℎ, 𝑇 = (1 − 𝑑𝑖{Ç∈K 𝑓𝑓 ℎ, 𝜏Q )𝛥�o_𝑐𝑎𝑝«,a      (4.16) 

where 𝑑𝑖𝑓𝑓(ℎ, 𝜏Q) again approximates the probability that user ℎ will be assigned to 

subtask 𝜏Q (and 1 − 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q  approximates the probability that the user is not assigned 

to subtask 𝜏Q).  That is, since 𝑃« 𝜏Q ∝ 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q , maximizing Eq. 4.13 maximizes the 

expectation of total utility Eq. 4.11. 

Putting all of this together, even though an agent cannot estimate which tasks will 

be available for its user in the future due to task openness, selecting tasks that maximize 

Eq. 4.13 will balance maximizing both current expected task rewards, as well as the 

user’s learning so that she can accomplish more tasks in the future.  As a result, the agent 

reasons non-myopically as desired and approximately optimizes the user’s cumulative 

reward function Eq. 4.2 (where exact optimization is impossible due to agent and task 

openness). 
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4.4.3 Estimating Uncertain Task Assignment 

Thus far, we have developed a solution that enables agents to estimate the expected 

cumulative rewards over a sequence of tasks (from a current task) for its human user, 

assuming that the user is assigned those tasks and they are successfully completed.  The 

last step of our solution is to account for uncertainty in task assignment itself, as well as 

the uncertainty that an assigned task will be successfully completed. 

In particular, agent openness also causes uncertainty in whether a user will be 

assigned to a task if an agent bids on that task because the agent does not necessarily 

know what other agents with which it is competing to acquire collaborative tasks for its 

user (where other, more qualified users could instead be amongst the 𝑛Q users selected 

for each subtask 𝜏Q).  Moreover, assuming that the agent can win a bid for a task, the 

agent still does not know whether enough peer users will be found to work with the user 

on that task in order to have the task successfully auctioned off.  Finally, the agent does 

not know if its user’s uncertain peers will successfully complete an assigned task. 

To address these uncertainties, our solution models the probability that the agent 

will acquire a successful task 𝑇 ∈ 𝔗 for its user in the current round of bidding as 

follows.  First, we split the probability into three parts: (1) the probability that the agent 

will win a submitted bid 𝑃Èo(𝑇) (i.e., the agent is one of the top 𝑛Q bidders for some 

subtask 𝜏Q), (2) the probability that the task will be auctioned off 𝑃�bb(𝑇|𝑤𝑏) (i.e., 

enough agents with qualified users bid on the task to form a collaborative team), 

conditioned on the event that the agent wins the bid, and (3) the probability of task 

success 𝑃_Êdd(𝑇|𝑤𝑏, 𝑜𝑓𝑓), conditioned on it being auctioned off to the user. 
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Using these probabilities, the agent can then compute a refined expected utility for 

its user from bidding on a task 𝑇: 

      𝐸 𝑈 ℎ, 𝑇 = 𝑃Èo 𝑇 	 ⋅ 𝑃�bb 𝑇|𝑤𝑏 ⋅ 𝑃yÊdd 𝑇|𝑤𝑏, 𝑜𝑓𝑓 ⋅	

                                    𝐸 𝑅 ℎ, 𝑇 + 𝐸 𝑈�`?p� ℎ, 𝑇        (4.17)  

To operationalize the probabilities 𝑃Èo 𝑇 , 𝑃�bb(𝑇|𝑤𝑏), and 𝑃yÊdd(𝑇|𝑤𝑏, 𝑜𝑓𝑓), an 

agent learns these probabilities based on its experience in the auction process over time 

as the environment changes due to both agent openness and user learning affecting the 

assignment of tasks to suitable users. 

To learn 𝑃Èo(𝑇), the agent considers its recent history from bidding on similar 

tasks.  If the agent won a large number of previous bids on similar tasks, then it has 

strong evidence that it is one of the most capable agents with respect to this task, and thus 

it will likely win a bid on task 𝑇 as well.  Likewise, if it lost many previous bids on 

similar tasks, then the agent should believe it has a low probability of winning a bid on 

task 𝑇.  Based on this intuition, the agent considers the 𝑠-most similar tasks 𝑆(𝑇) that it 

previously bid on (where task similarity is calculated using the Euclidian distance 

between the 𝑞𝑡Q and 𝑛Q values required for the subtasks 𝜏Q ∈ 𝑇).  Within these 𝑠 tasks, it 

considers the proportion of won bids: 

             𝑃Èo 𝑇 = H
y K hË�ÌÍ

𝑤𝑜𝑛(𝑇�)K�∈y(K) + 𝜖Èo       (4.18) 

where 𝜖Èo and 𝜖�Èoare small constants providing a non-zero (albeit small) probability of 

winning a bid, even if the agent has never previously won a similar task (noting that its 

situation might have changed due to human learning and agent openness). 
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To learn 𝑃�bb(𝑇|𝑤𝑏) we take a very similar approach: counting the number of 

similar tasks where the agent won the bid and the task was auctioned off (due to enough 

agents bidding to form a collaborative team with their users):       

   𝑃�bb 𝑇|𝑤𝑏 = H
y K hË��ÏÏ

𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)K�∈y(K) + 𝜖�bb   (4.19) 

Finally, to learn 𝑃yÊdd(𝑇|𝑤𝑏, 𝑜𝑓𝑓) we take a very similar approach as well: 

counting the number of similar successful tasks where the agent won the bid and the task 

was auctioned off:       

  𝑃yÊdd 𝑇|𝑤𝑏, 𝑜𝑓𝑓 = H
y K hË�ÑÒÓÓ

𝑠𝑢𝑐𝑐𝑒𝑒𝑑(𝑇�)K�∈y(K) + 𝜖yÊdd   (4.20) 

Overall, Eq. 4.17 (through Eq. 4.18-4.20) accounts for the various different types of 

uncertainty on collaborative task accomplishment caused by agent and task openness, as 

well as uncertainty caused by human user learning.  Maximizing this function should 

approximately maximize the human user’s cumulative rewards (Eq. 4.2), which is 

otherwise impossible to optimize directly due to these uncertainties. 

4.5 Experimental Setup 

To evaluate the performance of our solution in a range of collaborative task 

assignment problems, we conducted a series of experiments using simulated human 

users.  We compared our approach against baseline agents in order to evaluate the 

benefits of both (1) our probabilistic modeling of uncertainty caused by agent and task 

openness within expected utility calculations, and (2) considering the impact of for 

human learning towards future task accomplishment.  In particular, we considered three 

agent types: 
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Myopic Baseline (MB): an agent that chooses tasks maximizing Eq. 4.8 without 

considering human learning or the likelihoods of task success  

Learning-Aware Baseline (LAB): an agent that chooses tasks maximizing Eq. 4.13, 

considering human learning but not the likelihoods of task success 

Uncertainty and Learning-Aware (ULA): an agent that chooses tasks maximizing Eq. 

4.17, considering human learning and itself learning the likelihoods of task success based 

on past experience 

To evaluate these approaches, we considered three performance measures: (1) the 

number of tasks successfully completed per user, evaluating overall system performance, 

(2) the average rewards earned per user, evaluating the performance of agents in 

maximizing their objective function (Eq. 4.2), and (3) the average learning gain per user, 

evaluating the ability of agents to choose tasks that also benefit users’ future tasks. 

To consider the effects of a range of environments with different amounts of agent 

and task openness, we varied the amount of agent openness (𝐴𝑂) and task openness (𝑇𝑂) 

present in the environment. 𝐴𝑂 ∈ 0.0, 0.01, 0.02, 0.05, 0.1  was defined as the 

proportion of users ℎ ∈ 𝐻 who left the environment before each bid, as well as the 

proportion of agents entering the environment at the same time.  Likewise, 

𝑇𝑂 ∈ 0.0, 0.01, 0.02, 0.05, 0.1  was defined as the proportion of tasks 𝑇 ∈ 𝒯 that 

disappeared and appeared before each bid.  Thus, to aid in evaluation, the number of 

users and tasks was held constant at 𝐻 = 𝒯 = 100 every round of bidding, even 

though the contents of these sets changed over time.  Each round 𝑡, 𝔗 = 20 tasks were 

randomly sampled from 𝒯l and auctioned off to the agents.  Each task was composed of 5 
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subtasks randomly sampled from 20 total capabilities, requiring random 𝑞𝑡~[0.1, 1.0].  

Different capabilities had different learning curves for human users, randomly sampled 

from 𝛼��~ 0.1,0.2,0.3,0.4  and 𝛼�o_~ 1,2,3,4 , with 𝛽 = 0.2.  Total task rewards were 

randomly sampled within [1, 100]. For each 𝐴𝑂, 𝑇𝑂, and agent type combination, we 

conducted 100 experimental runs each with 100 rounds of task bidding.  Of note, to focus 

our evaluation on other aspects of agent reasoning, all assigned tasks succeeded in our 

experiments. 

4.6 Results 

We report our empirical results along two perspectives: (1) analysis of the overall 

system performance with respect to environmental impacts due to agent and task 

openness and (2) comparison of the three different agent types to investigate the benefits 

of both reasoning about uncertainty caused by openness in complex environments, as 

well as considering human learning in the agent’s decision making.  Note that in the 

following, we average the performance metrics by the amount of time a user lived in the 

environment, i.e., a user’s lifespan.  This is important to provide a fair comparison 

because of agent openness.  For example, it was possible for a user to live in the 

environment for a very short period of time and thus did not have as many opportunities 

to participate in the task bidding and completion, gaining rewards and learning.   

4.6.1 Impact of Agent and Task Openness 

Table 4.1 presents the average numbers of tasks solved per user for different 

combinations of agent openness and task openness in the environment.  The results are 

further shown for the three different agent types, as outlined in Section 4.5 above.  We 
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see that as AO increased, the average number of tasks solved by users decreased.  

Although AO could cause low expertise users to leave and high expertise users to join at 

any point in time, our results indicate that the overall trending effect of AO was to cause 

expertise gained over time through human learning to leave the environment.  Thus, the 

environment lost more expertise than it could recover from incoming human users, 

limiting the number of tasks that could be successfully completed by collaborative teams.   

However, as the amount of TO increased, there were no general, consistent trends. 

Instead, sometimes the number of tasks completed increased with TO, and other times it 

decreased.   This appears to be evidence that TO has complex interaction effects with AO 

and agent types.  

In summary, we see that openness (especially AO) has adverse impacts on the 

number of tasks completed by users. In the next section, we will further analyze how 

different considerations by agents in choosing which tasks to assign to their users 

affected the benefits to human users.  
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Table 4.1 Average Number of Tasks Completed Per User With Standard Errors 
(Normalized by User Lifespan) 

Ta
sk

 O
pe

nn
es

s 
 

Agent 
Type 

Agent Openness 

0.0 0.01 0.02 0.05 0.10 

0 

ULA 0.3052 
(0.0005) 

0.2906 
(0.0004) 

0.2830 
(0.0004) 

0.2695 
(0.0004) 

0.2597 
(0.0004) 

MB 
0.2645 

(0.0004) 
0.2566 

(0.0004) 
0.2576 

(0.0004) 
0.2549 

(0.0004) 
0.2543 

(0.0004) 

LAB 
0.2606 

(0.0004) 
0.2544 

(0.0004) 
0.2543 

(0.0004) 
0.2529 

(0.0004) 
0.2490 

(0.0004) 

0.01 

ULA 
0.2989 

(0.0005) 
0.2880 

(0.0004) 
0.2811 

(0.0004) 
0.2698 

(0.0004) 
0.2580 

(0.0004) 

MB 
0.2665 

(0.0004) 
0.2586 

(0.0004) 
0.2514 

(0.0004) 
0.2509 

(0.0004) 
0.2513 

(0.0004) 

LAB 
0.2639 

(0.0004) 
0.2574 

(0.0004) 
0.2560 

(0.0004) 
0.2527 

(0.0004) 
0.2524 

(0.0004) 

0.02 

ULA 
0.2940 

(0.0004) 
0.2857 

(0.0004) 
0.2762 

(0.0004) 
0.2684 

(0.0004) 
0.2597 

(0.0004) 

MB 
0.2619 

(0.0004) 
0.2558 

(0.0004) 
0.2564 

(0.0004) 
0.2532 

(0.0004) 
0.2483 

(0.0004) 

LAB 
0.2625 

(0.0004) 
0.2615 

(0.0004) 
0.2557 

(0.0004) 
0.2493 

(0.0004) 
0.2492 

(0.0004) 

0.05 

ULA 
0.2869 

(0.0004) 
0.2797 

(0.0004) 
0.2735 

(0.0004) 
0.2637 

(0.0004) 
0.2576 

(0.0004) 

MB 
0.2622 

(0.0004) 
0.2595 

(0.0004) 
0.2564 

(0.0004) 
0.2554 

(0.0004) 
0.2532 

(0.0004) 

LAB 
0.2634 

(0.0004) 
0.2596 

(0.0004) 
0.2562 

(0.0004) 
0.2525 

(0.0004) 
0.2532 

(0.0004) 

0.10 

ULA 
0.2826 

(0.0004) 
0.2756 

(0.0004) 
0.2682 

(0.0004) 
0.2640 

(0.0004) 
0.2571 

(0.0004) 

MB 
0.2621 

(0.0004) 
0.2578 

(0.0004) 
0.2578 

(0.0004) 
0.2563 

(0.0004) 
0.2544 

(0.0004) 

LAB 
0.2629 

(0.0004) 
0.2575 

(0.0004) 
0.2566 

(0.0004) 
0.2522 

(0.0004) 
0.2515 

(0.0004) 
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Table 4.2 Average Reward Per User With Standard Errors (Normalized by User 
Lifespan) 

Ta
sk

 O
pe

nn
es

s 
 

Agent 
Type 

Agent Openness 

0.0 0.01 0.02 0.05 0.10 

0.0 

ULA 2.4374 
(0.0045) 

2.3717 
(0.0045) 

2.3101 
(0.0045) 

2.1917 
(0.0044) 

2.0887 
(0.0043) 

MB 
2.1429 

(0.0043) 
2.1013 

(0.0043) 
2.0907 

(0.0043) 
2.0566 

(0.0043) 
2.0408 

(0.0042) 

LAB 
2.1090 

(0.0043) 
2.0833 

(0.0043) 
2.0895 

(0.0043) 
2.0335 

(0.0042) 
2.0088 

(0.0042) 

0.01 

ULA 
2.3904 

(0.0045) 
2.3161 

(0.0045) 
2.2860 

(0.0045) 
2.1948 

(0.0044) 
2.0895 

(0.0043) 

MB 
2.1482 

(0.0043) 
2.1240 

(0.0045) 
2.0810 

(0.0043) 
2.0332 

(0.0043) 
2.0042 

(0.0042) 

LAB 
2.1467 

(0.0043) 
2.0964 

(0.0043) 
2.0614 

(0.0043) 
2.0669 

(0.0043) 
2.0250 

(0.0042) 

0.02 

ULA 
2.3523 

(0.0045) 
2.3276 

(0.0045) 
2.2589 

(0.0045) 
2.1955 

(0.0044) 
2.0965 

(0.0043) 

MB 
2.1288 

(0.0043) 
2.0857 

(0.0043) 
2.0763 

(0.0043) 
2.0527 

(0.0043) 
2.0166 

(0.0042) 

LAB 
2.1356 

(0.0043) 
2.1200 

(0.0043) 
2.0859 

(0.0043) 
2.0263 

(0.0043) 
2.0253 

(0.0042) 

0.05 

ULA 
2.3326 

(0.0045) 
2.2690 

(0.0045) 
2.2268 

(0.0044) 
2.1474 

(0.0044) 
2.0781 

(0.0043) 

MB 
2.1327 

(0.0043) 
2.0987 

(0.0043) 
2.0824 

(0.0043) 
2.0813 

(0.0043) 
2.0335 

(0.0042) 

LAB 
2.1488 

(0.0043) 
2.1101 

(0.0043) 
2.0850 

(0.0043) 
2.0440 

(0.0043) 
2.0480 

(0.0042) 

0.10 

ULA 
2.3203 

(0.0045) 
2.2658 

(0.0045) 
2.2014 

(0.0044) 
2.1384 

(0.0043) 
2.0718 

(0.0043) 

MB 
2.1333 

(0.0043) 
2.1007 

(0.0043) 
2.0859 

(0.0043) 
2.0742 

(0.0042) 
2.0461 

(0.0042) 

LAB 
2.1219 

(0.0043) 
2.0933 

(0.0043) 
2.0794 

(0.0043) 
2.0388 

(0.0043) 
2.0276 

(0.0042) 
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Table 4.3 Average Learning Gain Per User (Normalized by User Lifespan) 

Ta
sk

 O
pe

nn
es
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 Agent Type 

Agent Openness 

0.0 0.01 0.02 0.05 0.10 

0.0 
ULA 0.00314 0.00359 0.00393 0.00437 0.00458 
MB 0.00279 0.00308 0.00336 0.00390 0.00434 
LAB 0.00279 0.00300 0.00336 0.00389 0.00423 

0.01 
ULA 0.00340 0.00376 0.00403 0.00442 0.00456 
MB 0.00286 0.00319 0.00338 0.00392 0.00430 
LAB 0.00286 0.00318 0.00346 0.00392 0.00434 

0.02 
ULA 0.00351 0.00388 0.00406 0.00440 0.00467 
MB 0.00294 0.00324 0.00354 0.00394 0.00433 
LAB 0.00295 0.00332 0.00350 0.00393 0.00430 

0.05 
ULA 0.00375 0.00407 0.00419 0.00444 0.00461 
MB 0.00308 0.00340 0.00358 0.00410 0.00437 
LAB 0.00312 0.00341 0.00363 0.00399 0.00440 

0.10 
ULA 0.00389 0.00418 0.00425 0.00465 0.00468 
MB 0.00317 0.00345 0.00371 0.00417 0.00446 
LAB 0.00317 0.00344 0.00369 0.00409 0.00437 
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4.6.2 Comparison of Agent Types 

First, with respect to task completion (shown in Table 4.1), modeling the 

uncertainty in securing successful task assignment by the ULA agents led to significantly 

greater task completion than the LAB and MB agents.  However, as AO increased, the 

ULA agents’ performance still decreased, but maintained higher performance than the 

other agents.  In a way, we see that while the ULA agents were able leverage its 

modeling of uncertainties in the open environment, such modeling was still to an extent 

susceptible to the increasing openness in the environment.  With increased AO or TO, the 

strain on maintaining an accurate probabilistic modeling of task success also increased. 

Turning more towards the benefits to individual human users represented by 

software agents, Table 4.2 presents the average rewards received by each user in the 

environment.  First, we see that the ULA agents outperformed the LAB and MB agents 

with statistical significance. The relatively similar performances between the LAB and 

MB agents imply that the consideration of expected utilities from learning and solving 

tasks did not provide marked advantage for the LAB agents over the MB agents that only 

considered expected utility from solving tasks.  The ULA agents’ ability to model the 

uncertainties in the open environment was the difference maker.  We will return to this 

point shortly. 

To further compare the three agent types, we look at the amount of learning per 

user, as shown in Table 4.3.  Again, the ULA agents were the most effective among the 

three agent types, with statistical significance.   
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4.6.3 Summary 

Overall, the ULA agents outperformed the LAB and MB agents in terms of task 

completed, rewards received, and learning gains.  We conclude that software agents 

probabilistically modeling the uncertainties in open environment is important to 

achieving better rewards long term for their human users.  Although this result is 

expected, it is especially promising due to the challenges associated with probabilistic 

modeling in open environments.  Recall that due to AO and TO, it is impossible for an 

agent to directly measure the probabilities in subtask and task assignment.   Instead, we 

had to approximate these through (1) considering the user’s capabilities compared to 

tasks (𝑑𝑖𝑓𝑓 ℎ, 𝜏Q ) and (2) by learning from the agent’s experience bidding in the 

environment (Eqs. 4.18-4.20).  It is very welcoming to observe that these types of clues 

and learning can be used to help agents model unmeasurable uncertainty in environments 

with challenging types and amounts of openness.   

Interestingly, we also note that as AO or TO increased, all three agent types 

increased their learning gains.  Thus, human learning (as modeled from the literature) 

provides users with a natural mechanism to adapt to open environments, acquiring 

greater quantities of expertise when it is most needed (either due to learned expertise 

leaving the environment with AO or from more diverse tasks requiring more diverse 

expertise with TO).   

However, referring back to Table 4.1, we see that this increased learning did not 

translate into more tasks solved per user.  We believe that this was because as users 

acquired more expertise and skills, they became qualified for more tasks, leading to more 

choices for submitting agents’ bids.  Without explicit coordination, this could have led to 
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increased competition between agents when trying to acquire tasks for their users (since 

more users were qualified for the same tasks).  In turn, this would result in lost 

opportunities to work as a team on other tasks on which some competing agents could 

have instead bid.  Thus, while increasing openness facilitated more learning gains in 

users, it also caused fewer tasks to be solved.  We believe that this emergent behavior is 

rather unique, brought on by openness in the environment, and we will investigate further 

in our future work.  We do note that modeling and learning the probabilities of bid 

outcomes provided some relief from this problem in ULA agents, since they directly 

reasoned about the likelihood of being assigned a task (learning from the choices of other 

agents in prior bidding rounds as a form of implicit coordination). 

4.7 Conclusions and Future Work 

In this chapter, we have described a multiagent solution for agent-based 

collaborative human task assignment.  We have particularly addressed agent openness 

and task openness in this problem.  We have further modeled human learning by doing 

and by observation, and incorporated these into the agent’s reasoning about how to 

acquire tasks for its user.  Our solution develops an approach for modeling and learning 

unmeasurable uncertainty caused by environment openness to guide its decision making 

in maximizing human user reward and learning gains over sequences of tasks.  

Experimental results demonstrate that our Uncertainty and Learning-Aware (ULA) 

agents are capable of choosing tasks maximizing expected utilities taking into account the 

uncertainties and learning.  In particular, our ULA agents outperformed two baseline 

agent types with statistical significance in terms of tasks completed, rewards received, 

and learning gains. 
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In terms of future work, first, we will investigate the inflection point of when too 

much learning is detrimental.   We pointed this out in our summary of our results above.  

Without coordination, more improved human users would bid for more different tasks as 

they try to maximize their long term utility since they become more qualified for more 

different tasks.  This could cause human expertise to be spread too thin such that only a 

few tasks can be successfully auctioned off and executed.  Perhaps, an agent that supports 

its human user would need to have metareasoning to decide when to learn and when not 

to learn based on its success rate of completing tasks.  Second, we plan to study the 

impacts of amount of diversity in the task types and in the agents’ capabilities.  For 

example, would considering human learning be able to counter the adverse impacts of 

openness in the environment if there was only a small percentage of highly capable 

human users in the environment to begin with?  If no, then how many highly capable 

human users would a system need to be able to “bootstrap” itself up to deal with 

openness successfully?  Diversity of capabilities in the human users can play a role in 

how the system adapts.  Likewise, diversity of task types can affect how human users 

learn and their ability to complete tasks.  Finally, we also plan to further investigate the 

impact of learning by doing with learning by observation.  Learning by observation, in 

particular, can benefit from more diversity of human users and task types in the 

environment.  Are there alternative models of observational learning? Should software 

agents specifically model the expected learning utilities of these two types of learning, 

which our current solution does not do? 
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Chapter 5: Implementation 

In multiagent ad hoc team formation of human like agents, environmental openness 

plays a crucial role, as agents factorize openness in calculating current versus future 

rewards to make team formation decisions. In this chapter, we describe a simulator called 

Multi Agent Ad-Hoc Team Formation Simulator (MAAHTFormS), for implementing and 

studying various strategies agents can use to make team formation decisions in open 

environments. We provide a comprehensive description of our simulation environment, 

and present some of the experiments that can be studied with this comprehensive 

simulator. MAAHTFormS has been utilized in the research of ad hoc team formations 

(Chen, B. Chen, X. Timsina, & Soh, 2015; Chen, Eck, & Soh, 2016) and has potentials 

for aiding further research work in this area. 

5.1 Introduction 

Ad hoc team formation in multiagent systems has been analyzed with focus on 

teaching and learning (Stone, Gan, et al., 2010) as well as performance optimization and 

environmental openness (Jumadinova et al., 2014).  As ad hoc team formation is 

collaboration without pre-coordination (Stone, Kaminka, et al., 2010b), there are many 

complex factors that needs to be considered in the team formation process (Khandaker & 

Soh, 2007; Stone, Gan, et al., 2010; Stone, Kaminka, et al., 2010b).  

Jumadinova et al. (2014) talk about the need to consider environmental openness 

for agents to make optimal decisions about team formation. Stone and Kraus (2010) 

analyze teaching and learning by agents, and if it is better for the system when agents 

teach or not. There is a whole host of work done on multi agent ad hoc teams, solving 
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well-established algorithmic problems like k-armed bandits (Stone, Gan, et al., 2010), 

communication and optimization in pursuit domain (Barrett et al., 2011), and modeling 

uncertainty in ad hoc team interaction (Agmon et al., 2014).  

Since the ad hoc team formation problem in open environment is a complex 

problem with many factors, there are many levels of experiments, which can be 

conducted, in order to measure the relationship between those factors (e.g., openness, 

agent capabilities, agent diversity, and task diversity). MAAHTFormS provides 

researchers with a comprehensive testing or simulation environment where they can 

study relationships amongst all the factors impacting ad hoc team formation.  

Although some result on the relationship between openness and performance in ad 

hoc team formation for multiagent system has been studied (Jumadinova et al., 2014), 

those results are only scratching the surface. There are relationships between 

environmental openness, learning, and agent behavior within this framework, which 

needs to be analyzed. Chen et al. (2015) raises one important question about the 

relationship between agent openness (AO) and task openness (TO), which is yet to be 

comprehensively studied and understood.   

There are also questions regarding agent diversity and task diversity, which are 

important in ad hoc team formation. Within our framework, agent diversity is the make-

up of agents within the simulation, i.e., what percentages of agents have what kind of 

capabilities (expertise)?  Questions regarding the impact of agent diversity on system 

efficiency and on learning have not been studied. At the same time, tasks within an 

environment can also be diverse. We believe the diversity of tasks within an ad hoc 

environment will also affect agent’s performance, as diverse tasks need diverse groups of 
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agents to be completed. The analysis on agent and task diversity will allow us to come up 

with better agent reasoning within the ad hoc team formation domain.  

In the next sections, we review some of the simulators or testbeds for multiagent 

system found in the literature (Section 5.2), discuss our simulation framework (Section 

5.3), detail the implementation (Section 5.4 to Section 5.8) and configuration process 

(Section 5.9), list the data generated from MAAHTFormS (Section 5.10) and finally 

include the scripts for running MAAHTFormS on Holland Commuting Center (HCC)’s 

super computer (Section 5.11). 

5.2 Related Work 

Jumadinova et al. (2014) introduced a multiagent ad hoc collaboration framework, 

which considers agent learning in ad hoc environment. This simulation framework allows 

agent to strategically choose which capability to learn and which agent to learn from. It 

provided us some insight of considering openness in ad hoc simulation environment. 

However, this framework has its limitations and needs some more careful treatment in 

modeling openness. First, this simulation framework introduced two new parameters, 

“agent openness” and “task openness”. but it does not model openness itself. It simply 

added and removed agents, introduced and replaced old tasks to the environment, instead 

of reason with openness. Second, agents did not model openness and hence they did not 

factor the openness into their reasoning when making decisions on choosing tasks. Third, 

it is a rather simplistic framework to ascertain the impact of openness in the performance 

of agents in terms of tasks solved and learning.  For example, it only considered the total 

number of subtasks finished and total learning utilities as the impact of openness. On the 
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other hand, our work also looks at the average values over the number of agents and over 

the number of ticks, as well as how these averages change over time, and over how agent 

capabilities change over time.  This approach allows us to study the impact of openness 

in terms of the rate of changes of various metrics. Though the framework considered 

agent learning, it was based on a function of preset learning utilities and did not consider 

modeling the effectiveness of learning. 

Massaguer et al. (2006) provide a multiagent simulation environment, named 

DrillSim, in disaster response scenario. It combines drills and simulation into one 

augmented reality based simulation environment, which evaluates information 

technology solutions by translating them into disaster metrics (e.g. call delay into time to 

evacuate etc.). This simulator enables researchers to evaluate many aspects of agent 

behaviors like cognitive and physical actions, agent’s role, etc. In addition, DrillSim 

provides control over agent role, so that introducing and testing newer agent roles is 

simpler.  

Fullam et al. (2005) describe the various research objectives that must be answered 

by a testbed for Agent Reputation and Trust (ART) and propose a testbed specification 

based on those research objectives. They develop a testbed framework that fulfills two 

purposes (1) comparative study of different research studies on agent trust and reputation, 

known as competition mode and (2) experiment with single strategies, or utilize result 

from competition mode for independent study, known as experiment mode. This research 

provides one important step towards building and using agent testbed for experimentation 

and evaluation of Agent Reputation and Trust (ART) strategies.  
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Bouron et al. (1990) propose a testbed to study the interaction between 

heterogeneous agents. This testbed provides researchers with the ability to control agent 

types by specifying their architectures and their behavior. There is also the ability to 

configure different parameters like communication between agents and different types of 

environment.  

The testbeds proposed by Massaguer et al., Fullam et al., Bouron et al. enable 

different types of experimentation in agent research. The ability to control the types of 

agent and their communication provided a lot of flexibility in setting up experiments. The 

simulation framework introduced by Jumadinova et al. (2014) has enabled us to look into 

agent openness and task openness in the research of ad hoc team formation, but 

MAAHTFormS provides researcher with the ability to configure, simulate agent team 

formation experiments, study new environmental factors like agent openness and task 

openness with agent modeling openness and agent reasoning about openness, and study 

the effectiveness of learning, as well as studying the impact of other factors like agent 

and task diversity.  

5.3 Simulation Framework 

In this section we will discuss the details of the design of our framework, including 

the design of work flow, agent and task design, the blackboard and auction design. We 

also include the implementation of simulating of openness, agent perceiving openness, as 

well as how to configure and run the simulator on Holland Computing Center’s (HCC) 

super computer. 
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5.3.1 Framework Design 

The overall architecture of our system can be found in Figure 5.1. It contains four 

major components. A set of agents, an admin who controls the environment, and a 

blackboard-based publish-subscribe system (Blackboard). In our system, agent does not 

have any knowledge about each other beforehand and does not have any preordinations, 

they only communicate with each other through Blackboard. Agents inside the simulation 

environment can see the available tasks’ information to assist their decision-making. The 

overall flow starts by the admin agent introducing agents into the environment from the 

agents pool and pulling the tasks into the environment from the tasks pool. The task 

information is published on the blackboard for agents to review. The admin agent 

controls the environment by introducing new agents and removing old agents according 

to the agent openness. New tasks are also introduced according to task openness but tasks 

remain in the environment until they are solved. Agents examine the available tasks and 

make decisions on which task to bid on according to certain task selection strategies and 

submit their bids. After that, the auction will start. The admin agent chooses the winning 

agent according to the algorithm (Algorithm 5.1) with which it is deployed (Section 5.6), 

and publishes the results to the blackboard for agents to see. After the auction results are 

disclosed, agents who get selected will gather together (hence form team) to solve the 

task. The tasks that are not solved (not auctioned off) will remain on the blackboard for 

the next round of auction together with the newly introduced tasks. 

 



www.manaraa.com

 

 

5.3.2 Tasks and Capabilities 

In Section 3.3.3 we have stated the notations for tasks and capabilities, for the sake 

of completeness of this chapter, we include them here again in brief. 

A set of tasks is denoted as 𝒯, and each task 𝑇 ∈ 𝒯 has a set of subtasks: 

𝑇 = {𝜏H, 𝜏I,⋯ , 𝜏 K }. Similarly, 𝒞 = 𝑐H, 𝑐I, … , 𝑐 P  denotes the set of all capabilities that 

agent could have. Each subtask	𝜏 requires exactly one capability 𝑐 from the set 𝒞 to 

complete the subtask. For example, in order to solve subtask 𝜏Q, the capability 𝑐Q must be 

needed. In addition, each subtask	𝜏Q requires 𝑛Q ∈ ℕ agents to complete and it requires 

the minimal quality of capability 𝑞𝑡Q, where 𝑞𝑡Q ∈ 	 (0,1].  Thus, each subtask is a triple 

𝑐Q, 𝑞𝑡Q, 𝑛Q .  Furthermore a set of agent is denoted as 𝐴, and each agent 𝑎V ∈ 𝐴 is 

Figure 5.1 Overall architecture of the multiagent simulation system. 
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described by 𝒄𝒂𝒑𝒊 = 𝑐𝑎𝑝V,H, 𝑐𝑎𝑝V,I,⋯ , 𝑐𝑎𝑝V,|𝒞| ∈ [0,1]|𝒞| where 𝑐𝑎𝑝V,Q denotes 𝑎V’s 

expertise with respect to the 𝑘-th capability 𝑐Q. 

5.3.3 Openness 

Openness is the key thing in our study. It represents the phenomenon that 

agents/tasks join and leave the environment. The focus of this thesis is to investigate the 

importance and the impact of openness in ad hoc team formation. In this section, we 

describe the two implementations we used to simulate the openness in Chen et al. (2015) 

which can be found in Chapter 3, and Chen et al. (2016), which can be found in Chapter 

4, respectively. 

 Agent Openness 

As stated in Section 3.3.2, agent openness refers to the rate of new, previously 

unknown agents that are introduced into the environment, while known agents exit the 

environment. 

We have two implementations for agent openness (AO) in our simulator. In both 

implementations, we randomly remove agents from the simulation and introduce agents 

that were not previously present in the simulation. The difference is how we remove 

agents. We use 𝑁? to represent the total number of agents in the simulation environment, 

and 	𝐴𝑂 ∈ 	 [0,1], to represent the agent openness. In Chen et al. (2015), 𝐴𝑂 = 0 means 

no new agent is introduced and 𝐴𝑂 = 1 means all the initial agents introduced in tick 1 

will be replaced with different agents by the end of the simulation. Hence, the number of 

agents to be removed at each tick is 𝑎𝑔𝑒𝑛𝑡𝑃𝑒𝑟𝑇𝑖𝑐𝑘 = (𝑁?/𝑇′) ∗ 𝐴𝑂  where 𝑇′ is total 

simulation ticks.  Note that (𝑁?/𝑇′) ∗ 𝐴𝑂 is not always an integer, hence we take the 
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floored values as the number of agents to be removed, and keep accumulating the 

decimal values when it reaches 1, then we set 𝑎𝑔𝑒𝑛𝑡𝑃𝑒𝑟𝑇𝑖𝑐𝑘 = (𝑁?/𝑇′) ∗ 𝐴𝑂 + 1. This 

allows us to remove 1 more agent in the current tick.  

However, in Chen et al. (2016), we decided to implement the AO as the likelihood 

of each agent will stay after each tick. At the end of each tick, a uniform random number 

generator will generate a decimal number between 0 and 1 for each agent. If this number 

is less than or equal to AO, then this agent will leave and a new agent will enter the 

environment. 

 Task Openness 

In Section 3.3.2, the definition of task openness (TO) was given as the rate of new, 

previously unseen tasks that are introduced into the environment. In Chen et al. (2015), 

the admin initially posts 30 tasks on the blackboard, then the admin will introduce 1 task 

at the beginning of each tick. TO determines if this newly introduced task is a new or an 

old task. A uniform random number between 0 and 1 will be generated and be compared 

with TO, if the number is less than or equal to TO then the task to be posted should be a 

new task, otherwise, the task should be an old task. The admin keeps a list of all tasks 

that are posted, if a new task needs to be posted, then it chooses a task from the task pool, 

different than the ones that are on the list of posted tasks, to post. If an old task needs to 

be posted, then the admin randomly chooses a task from the posted task list to post. 

Notice that, there will be tasks that did not get auctioned off at the end of each tick and 

they will be re-posted onto the blackboard for the auction for the next tick. In summary, 

TO is also simulated by introducing tasks which have different sub-tasks and difficulty as 
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the simulation moves forward, 𝑇𝑂 ∈ 	 [0,1]. One new task is added to the system at each 

tick in the simulation and TO = 0 means that each new task has already appeared before 

in the environment and TO = 1 means each new task is a different task from the ones 

already in the environment (i.e., tasks which have different combinations of subtasks and 

difficulty). 

However, in Chen et al. (2016), the admin maintains a task pool of 100 tasks, and it 

randomly chooses 20 tasks from the task pool to post them on blackboard for auction. 

Notice, no tasks will be reposted no matter they are auctioned off or not. The TO 

determines the percentage of the tasks in the task pool (100 tasks) needs to be replaced by 

the end of each tick. 

A third implementation is also included in our simulator. In this implementation, 

the admin agent posts 20 tasks at the beginning of every tick. The admin agent keeps a 

list containing the task types of the newly posted 20 tasks. After the tasks have been 

posted, a uniform random number will be generated for each task on the list, if the 

number is less than or equal to TO, then this task will be replaced by a brand new 

task/task type and will be introduced into the environment at the beginning of the next 

tick. Notice, same as the TO implementation, no matter the task is auctioned off or not, it 

will not be reposted for the auction. 

5.3.4 Agent Perceiving Openness 

 Perceiving Agent Openness 

The environmental openness plays an important role on agents considering 

potential learning gains, and thus indirectly which team to join. In a dynamic 
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environment, agents or tasks may enter and leave the environment, hence we consider a 

way to model Agent Openness (AO) and Task Openness (TO) (Section 5.3.3).  

Here we provide three options for agents to perceive the environmental openness: 

(1) NoSharing, where agents model on their own without sharing information with each 

other, (2) Sharing, where agents share information to model the openness together, and (3) 

Informed, where agents are given the degree of openness by the admin of the 

environment. 

NoSharing.  In our simulation model, let ℒV denote the set of agent 𝑎V’s 

collaborators who have left the environment. Each agent 𝑎V keeps track of their 

collaborators by storing its collaborators’ information in a set 𝒮V, and checks the 

blackboard after every iteration for the information of the agents who have left the 

environment and updates 𝒮V . Agent 𝑎V perceives the Agent Openness at time tick 𝑡 using 

Eq. 5.1: 

𝐴𝑂V(𝑡) =
|	ℒf|
|𝒮f| l

    (5.1) 

Imagine a person who is working in a department of a big company. The company 

is so big that this person has no way of knowing the human resource changes of the entire 

company.  The only piece of information this person can acquire is the changes of the 

employees in his/her own department, since these people are his/her coworkers 

(collaborators).  This person can thus assess the company’s human resource changes 

based on his/her own observation of his/her own department. If his/her coworkers get 

changed so often, then it makes sense to assume that the Agent Openness in this whole 

company is high and vice versa.  
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Sharing.  In this case, agents will share the information of the agents with which 

they have worked to other agents in the environment and will share the “exited” agents 

that they have collaborated before in solving a task.  Hence the Agent Openness can be 

perceived as in Eq. 5.2.  Note that since now all agents share the same model, we do not 

denote AO with an underscript i, 𝑁? is the total number of agents. 

𝐴𝑂(𝑡) = |ℒØ	∪	ℒÚ	∪	…	∪	ℒÛ�	|
|𝒮Ø	∪	𝒮Ú∪…	∪	𝒮Û�| l

  (5.2) 

Using the same example, if the person in the big company shares his/her colleagues’ 

leaving information with people in other departments and get some information back 

from agents in other departments, then he/she would have a better idea of the change of 

personnel of the company as a whole.  

Informed.  The admin can also publish the AO on blackboard, so that every agent 

can know the exact AO and make the task selection decisions based on this true AO.  

This is represented in Eq. 5.3 as purely a constant value assignment.  

𝐴𝑂 𝑡 = 𝐴𝑂   (5.3) 

Once again, using the same example, this is akin to the company announcing the 

number of employees leaving the company and the number of new employees joining the 

company. 

 Perceiving Task Openness 

Task Openness (TO) is another important factor that affects an agent’s judgment of 

expected utilities of solving a particular task—hence directly affect agents’ decisions on 

selecting tasks. As mentioned Section 5.3.3.2, TO refers to the rate of new, previously 
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unseen tasks (task types) that are introduced into the environment, while previously seen 

tasks are retired.  We provide three options for agents to perceive environmental Task 

Openness, similar to the options provided in perceiving Agent Openness: 

NoSharing. An agent perceives TO base on the tasks it has seen by itself only, with 

no information sharing among agents.  Let	𝒯V			be the set of task types (Section 5.5) that 

one agent has seen, and let 𝒩V be the set of tasks that one agent has encountered. In each 

iteration, when agent 𝑎V checks the blackboard to see which tasks are available.  Note that 

the tasks posted on blackboard consists of newly posted tasks and the reposted leftover 

tasks from last iteration’s auction.  The agent adds the task type 𝒯�ÝÞ� of each task 𝑇 it 

sees to the set 𝒯V	. Note that it is a set, so if the reposted tasks have been previously added 

to this set, it will not be doubly counted. The cardinality of the set 𝒯V, |𝒯V	|, is the total 

number of distinct task types seen so far.   

Meanwhile, the agent adds each task 𝑇 to set 𝒩V. Note, again, the reposted tasks 

that have been seen by this agent before will not be counted again. 

We use the ratio of cardinality of the set of distinct task types seen by one agent 

and total number of tasks seen by an agent to represent the perceived TO in Eq. 5.4. 

𝑇𝑂V(𝑡) =
𝒯f
𝒩f
	
l
																				 (5.4) 

For example, if an agent has seen 5 tasks in total, and 3 of them are distinct tasks 

(i.e., with different task types), then the TO should be 3/5 =0.6.  Thus, based on this 

perception, the agent can expect the next task it is about to see has 60% chance to have a 

new task type which is different from the ones it has seen before.  
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Sharing.  Agents share information about tasks that they have seen and model TO 

together.  In this case, agents will share the information of the task types as well as tasks 

they have seen so far to other agents in the environment. Hence the Task Openness can 

be perceived as in Eq. 5.5.  Note that since now all agents share the same model, we do 

not denote TO with an underscript i. 

𝑇𝑂(𝑡) =
𝒯Ø	∪	𝒯Ú	∪	…	∪	𝒯Û�		
𝒩Ø	∪	𝒩Ú	∪	…	∪	𝒩Û� l

																					 (5.5) 

Informed. In this case, the admin will publish the exact TO on blackboard, every 

agent has access to it, as shown in Eq. 5.6. 

𝑇𝑂 𝑡 = 𝑇𝑂																													 (5.6) 

 Different Considerations for Perceiving AO and TO 

Note that there is a difference between the ways Agent Openness and Task 

Openness are defined: in AO, we do not consider agent types, but in TO, we do consider 

task types.   

This is because we consider that every agent is unique in our model even when two 

agents have the same set of capabilities and each capability has the same quality.  On the 

contrary, we consider that two tasks have the same task type if they consist the same set 

of subtasks and have the same task difficulty levels. (See Section 5.5.2) 

The rationale behind this is that agents are capable of learning and their capabilities 

are changing dynamically as they live in the simulation environment.  As a result, an 

agent’s type changes over time.  Hence, the makeup of agent types in the environment 
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changes accordingly as well.   But as agents learn and evolve, these changes are to be 

expected and should not be considered as part of the agent openness.   

Furthermore, agents also develop relationships with other agents they have worked 

with. When some agents leave the environment, the agents that are still in the 

environment will lose their relationships with those agents. If new agents with exactly 

same capabilities as those that left are introduced into the environment, they have no 

relationships with those agents already in the environment. Therefore, they are not 

considered as the same agents as those that left.  

On the other hand, tasks will not change over time.  The only thing that matters to 

the agents is task types. According to our definition of task types, a group of novice 

agents together could solve novice tasks. Similarly, a group of average agents are 

expected to solve moderate tasks, and a group of expert agents could solve hard tasks. 

Moreover, from the agent perspective, they simply treat the tasks that have the same task 

type as exactly the same task. For example, a task that has mopping the floor and 

cleaning the window as its two easy subtasks is no different that the other task that is 

comprised by same two easy subtasks with slightly different quality and/or number of 

agent requirements. 

5.4 Agent Design (Agent Type) 

In this section, we describe our agent design in detail. Section 5.4.1 lays out the 

design and lifecycle of the admin agent. Section 5.4.2 explains how we categorize agents 

into different types and the lifecycle of the individual agents in our model. 
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5.4.1 Admin Agent 

The admin is the agent who is controlling the simulation environment. It peruses a 

configuration file for the simulation environment parameters. The admin serves three 

purposes. 

First, it controls agents entering and leaving the environment based on the given 

agent openness (AO) parameter. Second, it discovers and decomposes task. Third, it 

holds auctions and allocates tasks.   Note that, unlike agents (Section 5.4.2) that are able 

to solve tasks, the admin does not solve tasks.  

There is no communication pathway between the admin and agents to share the 

admin’s environment knowledge. Let 𝐴 be the set of all agents in the environment, let 

𝑎V ∈ 𝐴 be an agent in 𝐴, to keep AO of the environment close to the given AO 

specification, the admin needs to periodically remove a set of agents 𝐴′ from the 

environment and introduce the same number of new agents into the environment. The 

removed agents 𝐴� will be randomly selected from 𝐴. In the case that agent 𝑎V 	∈ 	𝐴′ is 

busy doing a task T, the admin will remove it from the environment after 𝑎V	finishes the 

task immediately. The information of the removed agents is stored on the blackboard for 

existing agents to use to perceive agent openness in the environment.  

The admin is also able to discover tasks from the environment through a domain-

specific protocol. Let 𝑇 denote a task that the admin has discovered. The admin can 

decompose the task T into a set of subtasks (recall that 𝑇 = 𝜏H, 𝜏I,⋯ , 𝜏 K , and 𝜏Q is a 

triple 𝑐Q, 𝑞𝑡Q, 𝑛Q ), with the information of 𝑐Q as the skill or capability required, with its 

associated number of required agents 𝑛Q and the minimum threshold of quality 𝑞𝑡Q 
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required of an agent in order to solve it.  The decomposed tasks will be included in a 

message and be posted on Blackboard. After the admin posts tasks on the blackboard, it 

starts an auction session, as described in Section 5.6, Figure 5.2 below shows the 

lifecycle of the admin.  

Figure 5.2 The lifecycle of the admin of the environment for our model.  
The arrows show the sequence of actions. 
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5.4.2 Individual Agents 

Individual agents are the core task solving forces in our model. They have 

capabilities that correspond to the required skills to solve subtasks that are introduced 

into the environment. Moreover, each agent can improve their capabilities and update 

them dynamically. 

We classify our agents into three types: (1) novice agent, (2) average agent, and (3) 

expert agent. We first define the capability type. Let 𝑐𝑎𝑝V,Q ∈ 0,1  be the quality of agent 

𝑎V’s 𝑘th capability in 𝒄𝒂𝒑𝒊. We define 𝑐𝑎𝑝V,Q as novice capability if 	𝑐𝑎𝑝V,Q ∈ [0.0, 0.3), 

𝑐𝑎𝑝V,Q as average capability if 𝑐𝑎𝑝V,Q ∈ [0.3, 0.7], and 𝑐𝑎𝑝V,Q as expert capability if  

𝑐𝑎𝑝V,Q ∈ [0.7, 1.0)	(Table 5.1). Let 𝑁 = 𝒞  (see Section 5.3.2) which is the cardinality of 

the set of all possible capabilities in the environment. Agents’ types are classified based 

on Table 5.2. An agent is classified as Novice agent if  𝑁/3		or more of its capabilities 

are novice capabilities, less than 𝑁/3 of its capabilities are average capabilities, and less 

than 𝑁/3	of their capabilities are expert capabilities. In addition, an agent is called 

Average agents if less than 𝑁/3 of its capabilities are expert capabilities and 𝑁/3 or 

more of its capabilities are average capabilities. Moreover, we say an agent is an Expert 

agent if 𝑁/3 or more of its capabilities are expert capabilities.  

Since our agents have learning ability, the capability types of their capabilities are 

changing dynamically during simulation.   Hence one agent’s type would change 

overtime and will be updated after its capabilities get changed. For example, a novice 

agent will be promoted to average agent once more than 𝑁/3 of its capabilities are 
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average capabilities after learning; a average agent will be promoted to expert agent once 

it has 𝑁/3 or more expert capabilities after learning. 

Table 5.1 This table shows the classification criterion of agent’s capability types. 

Quality Range [0.0, 0.3) [0.3, 0.7) [0.7, 1.0] 

Capability Type Novice Average Expert 

 

Table 5.2 This table shows the classification criterion for the agent type based on the 
number of capabilities types of its capabilities. 

 Number of easy 
capabilities 

Number of average 
capabilities 

Number of expert 
capabilities 

Novice 
Agent ≥ 𝑁/3 < 𝑁/3 < 𝑁/3 

Average 
Agent * ≥ 𝑁/3 < 𝑁/3 

Expert 
Agent * * ≥ 𝑁/3 

	

An individual agent’s lifecycle is shown in Figure 5.3.  In each iteration, an agent 

starts with checking its status.  If its current subtask on hand is not finished—i.e., it is 

busy, then it will keep executing the current subtask/subtasks. Otherwise, if it is not busy, 

not in middle of executing a subtask, then it checks the blackboard for new tasks as well 

as the published list of agents who have left the environment. The agent uses the 

information acquired to perceive the environmental Agent Openness (AO) and Task 

Openness (TO).  Subsequently it uses this information to help analyze tasks based on task 

selecting strategies (Section 3.3.5). After that, each agent bids for one best task (if there is 

one, otherwise do not bid), submits the bid to blackboard auction and waits for the result. 

When the result is available, the agent checks the blackboard for task assignments.  If it 



www.manaraa.com

wins the bid, it then starts executing its assigned subtasks.  If it does not win the bid, it 

then goes to the next iteration. 

 

 

 

Figure 5.3 The lifecycle of individual agent of the environment for our model.  The 
arrows show the sequence of actions. 

	

5.5 Task Design 

In parallel to the agent design, we also break tasks into three categories according 

to their difficulty levels. We have (1) easy tasks, (2) moderate tasks, and (3) hard tasks. 

Task difficulty levels are defined in Section 5.5.2. 
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When we consider whether two tasks, say tasks 𝑇} and 𝑇Q, are of the same task 

type, they must satisfy two conditions.  First, they must have the same set of subtasks.  

Second,	𝑇} and 𝑇Q must have the same task difficulty level. The concept of task type is 

important, since it is tied to task openness and agents’ perception of tasks openness.  

5.5.1 Subtask Difficulty Level 

In order to define task difficulty level, we first define subtask difficulty level. 

Subtask difficulty is defined in terms the quality threshold it requires as well as the 

number of agent it requires. Each subtask 𝜏Q can be classified as easy subtask, moderate 

subtask, and hard task. We classify the difficulty level of subtask 𝜏Q based on two 

parameters, one is the quality requirement 𝑞𝑡Q , and the other is the number of required 

agents,	𝑛Q.  Table 5.3 shows the classification criterion. 

Table 5.3 This table shows the classification criterion for the difficulty level of subtasks. 
Note that 0<β<α<1; 𝑛Q denotes the number of required agents for solving a subtask; 𝑁? 

is the total number of agents in the simulation environment. α, β, are parameters. 
Subtask difficulty level 1 ≤ 𝑛Q < 𝛽𝑁? 𝛽𝑁¤ ≤ 𝑛Q < 𝛼𝑁? 𝑛 ≥ 𝑛Q𝑁? 

0 ≤ 𝑞𝑡Q < 0.3 Easy Moderate Hard 

0.3 ≤ 𝑞𝑡Q < 0.7 Moderate Moderate Hard 

0.7 ≤ 𝑞𝑡Q < 1.0 Hard Hard Hard 

 

Notice that the classifier in terms of 𝑛Q	is proportional to the total number of agents 

in the environment. We do it this way because the difficulty to find certain number of 

qualified agents to executing a subtask is proportional to the total number of agents,	𝑁?, 

in the environment.  For example, if we only have 50 agents in the environment, a 

subtask which requires 10 agents would certainly be a difficult one, but if we have 2000 
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agents in total, then it wouldn’t be difficult any more.  Instead, it would be a moderate, or 

even easy, subtask in this case. 

As an example of this subtask classifier, in the case that we set the total number of 

agents 𝑁? = 200, and set 𝛼 = 0.015, and 𝛽 = 0.01, then we would have 𝛽𝑁? = 0.01 ∗

200 = 2, 𝛼𝑁? = 0.015 ∗ 200 = 3. Hence, a subtask which requires 3 or more agents is 

classified as hard subtask regardless of the quality requirements of the subtask, and a 

subtask requires 2 agents and has a quality requirement of 0.9 would also be a hard 

subtask. However, a subtask which requires 2 agents but the quality requirement is either 

0.5 or 0.1, it is still be classified as a moderate subtask. 

5.5.2 Task Difficulty level 

With the definition of the difficulty of subtasks, now we define the difficulty of a 

task as follows.  

Let the total number of subtasks in one task 𝑇 to be 𝑁K, let ℰK denote the set of 

easy subtasks in 𝑇, ℳK be the set of moderate subtasks in 𝑇 and ℋK stands for the set of 

hard subtasks in T respectively. For a task 𝑇, if the cardinality of ℋK is greater than or 

equal to âã
ä

, regardless of the value of ℳK  and ℋK , then we say this task 	𝑇	 is 

dominated by hard subtasks, hence classify 	𝑇	 to be a hard task. On the other hand, if a 

task 	𝑇	 is not dominated by hard subtasks, i.e. ℳK < âã
ä

 , and the cardinality of  ℳK  

is greater or equal to âã
ä
	,then we say 𝑇  is dominated by moderate subtasks regardless of 

the value of ℰK	  , and hence classify𝑇  to be an moderate task. Finally, if a task 𝑇 is 
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neither dominated by hard subtasks nor by moderate subtasks then we say 𝑇 is an easy 

task (See Table 5.4).  

For example, consider the tasks 𝑇H,	𝑇I, 𝑇ä, and  𝑇å  in Table 5.5.  We have 

𝑁KØ	=	𝑁KÚ	=	𝑁Kæ	= 5, then âãØ
ä
= âãÚ

ä
= âãæ

ä
= 2. For 𝑇H, we have ℋKØ < 2 and ℳKØ ≥

2, hence TH is a moderate task. For 𝑇I and 𝑇ä, we have ℋ	KÚ ≥ â	ãÚ
ä
= 2 and ℋKæ ≥

âãæ
ä
= 2, hence both 𝑇I and 𝑇ä are classified to be hard tasks. Moreover, task 𝑇å has 𝑁Kç	= 

6, âãç
ä
= 2, ℋKç < 2,	 ℳKç < 2, and ℰKç ≥ 2, therefore, 𝑇å is said to be an easy task. 

Table 5.4 This table shows the classification criterion for the difficulty level of tasks. 
Here N is the total number of subtasks that comprise the task; ℰ𝑇 , ℳ𝑇 and ℋ𝑇  are the 

number of easy subtasks, moderate subtasks, and hard subtasks respectively. 
	 ℰ  ℳ  ℋ  

Hard Task * * ≥ 𝑁/3 

Moderate Task * ≥ 𝑁/3 < 𝑁/3 

Easy Task ≥ 𝑁/3 < 𝑁/3 < 𝑁/3 

	

Table 5.5 Examples of tasks that are classified as easy, moderate, and hard tasks. Using 
the task difficulty classifier, 𝑻𝟏 is classified as moderate task, 𝑻𝟐, 𝑻𝟑 are hard tasks and 

𝑻𝟒 is an easy task 
 𝑇H 𝑇I 𝑇ä 𝑇å 

ℰ  2 1 2 4 

ℳ  2 2 1 1 

ℋ  1 2 2 1 

N 5 5 5 6 

𝑁/3 2 2 2 2 

Difficulty 
Level Moderate Hard Hard Easy 
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We now give an example on determine whether the tasks are of the same type. 

Consider the tasks in Table 5.6 where tasks𝑇H,	𝑇Iand 𝑇ä have the same set of subtasks, 

but each subtask has a different requirement for the minimum number of agents needed 

and a different quality threshold. Based on the task difficulty level classification criterion 

described in Table 5.4 and the subtask difficulty level classification criterion described in 

Table 5.3, given 𝑁? = 200, α = 0.015, and β = 0.01, we can classify 𝑇H as a moderate 

task,	𝑇I	a hard task, and 𝑇ä a moderate task. Hence 𝑇H and𝑇äare considered as having the 

same task type while the pair𝑇H and 𝑇I, and the pair 𝑇I and 𝑇ä are considered to as having 

different task types. 

Table 5.6 Example of tasks that can and cannot be considered to have the same task type 
𝑇H is a moderate task,	𝑇I  is a hard task, and 𝑇ä is a moderate task. 𝑇H and  𝑇ä are 

considered as having the same task type while 𝑇H and 𝑇I, also 𝑇I and  𝑇äare considered as 
having different task type. Note the subtask difficulty level is determined based on Table 

5.3 with 𝑁? = 200, and set 𝛼 = 0.015, and 𝛽 = 0.01 
𝑇H 

Subtask 𝜏H 𝜏ì 𝜏Hä 𝜏å 𝜏í 
𝑛 1 2 3 2 1 
𝑞𝑡 0.2 0.4 0.3 0.5 0.5 

Subtask Difficulty Level Easy Moderate Hard Moderate Moderate 
𝑇I 

Subtask 𝜏H 𝜏ì 𝜏Hä 𝜏å 𝜏í 
𝑛 2 3 1 1 1 
𝑞𝑡 0.7 0.2 0.1 0.4 0.5 

Subtask Difficulty Level Hard Hard Easy Moderate Moderate 
𝑇ä 

Subtask 𝜏H 𝜏ì 𝜏Hä 𝜏å 𝜏í 
𝑛 2 2 1 1 2 
𝑞𝑡 0.7 0.2 0.1 0.1 0.5 

Subtask Difficulty Level Hard Moderate Easy Easy Moderate 
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5.6 Blackboard and Auction Design 

The center of our system is a blackboard-based publish-subscribe system 

(Wooldridge, 2009).This system provides a place for interacting and coordinating 

between agents in the environment, and provides information about current available 

tasks to agents. It has been proved that such design can eliminate the demands for explicit 

coordination and communication protocols between agents (Stone et al. 2010). In our 

design, tasks are allocated through an auction, which is held by admin through the 

blackboard. Figure 5.4 shows the timeline of admin and agents communicate and allocate 

tasks through blackboard. At the beginning of each iteration, the admin maintains Agent 

Openness (AO) by removing and introducing agents. The information of removed agents 

is stored on the blackboard by the admin. Then the admin posts a list of messages on the 

blackboard, which contains one new task that the admin chose from the task pool as well 

as the tasks that have not been auctioned off. Agents in the environment can check these 

messages to see current available tasks. Then the admin starts an auction session for all 

tasks on the blackboard. If an agent is not busy (idle), then, after perceiving and updating 

AO and TO of the environment by accessing the stored list of removed agents as well as 

the available tasks on blackboard, each agent analyzes current available tasks on the 

blackboard and bids for the one that returns the highest potential utility.  To analyze 

current available tasks on the blackboard, an agent adheres to a certain task selection 

strategy (we have designed several strategies in Section 3.3.5) and bids for at most one 

task in one iteration by submitting the bid to the blackboard. After that, the admin gathers 

all the bids, allocates the task using a task allocation algorithm (described in the next 

paragraph) to assign each task to the best capable agents who bid for the task, and posts 
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the auction results on the blackboard. Upon the disclosure of the auction results, agents 

will be notified and checking back on the blackboard.  Winning agents will then start to 

execute the subtasks to which they are assigned and other agents will wait for the next 

iteration. 

 

 

During the auction, let 𝐴K denote the set of agents that bid for task	𝑇. For each 

subtask𝜏Q ∈ 𝑇, the admin selects the top 𝑛Q agents 𝑎V ∈ 𝐴K that have the highest 

capability 𝑐𝑎𝑝V,Q	such that 𝑐𝑎𝑝V,Q is larger than the quality threshold 𝑞𝑡Q. If at least one 

subtask fails to have enough qualified agents, then the whole task will fail to be auctioned 

Figure 5.4 Admin and agents communicating and allocating tasks through 
blackboard. The arrows show information flows between the admin and blackboard as 
well as those between agents and blackboard.  The sequence of actions is designated 

as well. 
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off. Algorithm 5.1 below shows the details of the auction algorithm the admin agent uses 

to allocate tasks. 
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Start Algorithm Auction (Blackboard b) 
1. Set	ℳ	 ← 	𝑎𝑙𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑂𝑛𝐵𝑙𝑎𝑐𝑘𝑏𝑜𝑎𝑟𝑑	 
2. Foreach message 𝑚V In ℳ Do 
4.  𝑆	 ← 	 {∅} // set with assignment pair (𝑎V, 𝜏Q) 
5.  𝑇	 ← 	𝑇ℎ𝑒	𝑡𝑎𝑠𝑘	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑	𝑖𝑛	𝑚V 
6.  𝐴K ← 	 {𝑎V|	𝑎V 	 ∈ 𝑎𝑙𝑙	𝑎𝑔𝑒𝑛𝑡𝑠	𝑏𝑖𝑑𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	𝑇	} 
7.  InnerLoop: 
8.  Foreach subtask 𝜏Q In 𝑇 Do 
9.   Sort 𝐴Kbase on agents' quality of 𝜏Q from high to low  
10.   If |𝐴K| 	>= 	𝑛Q Then 
11.    Let 𝑎} 	← 	the	𝑛Q	th	agent	in	𝐴K  
12.    If 𝑐𝑎𝑝	},Q > 	𝑞𝑡Q Then 
13.     For i from 1 to 𝑛Q Do 
14.      Add the pair (𝑎V, 𝜏Q) to the assignment S 
15.     End 
17.    Else 
18.     Post 𝑚V to b.returnedMessage //Main agents may introduce this task  
         again in the future ticks. 
19     Break InnerLoop 
20.    End 
21.   Else 
22.    Post 𝑚V to b.returnedMessage  
23    Break InnerLoop 
24.   End 
25.  End 
26.  Post assignment S to b    
27.  Remove 𝑚V from Blackboard 
28. End 
End Algorithm 

Algorithm 5.1 Auction algorithm used by admin to allocate tasks 
	

5.7 Probabilistic Model 

In this section, we talk about the probabilistic model we used in two of our 

included task selection strategies in detail. These two task selection strategies were used 

in Chen et al. (2016).  
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As mentioned in Section 3.3.2, due to the openness, there are uncertainties in the 

task assignment.  An agent who bids for a task may or may not get the task assignment 

due to two reasons: (1) it does not win the bid since the admin agent only chooses top 𝑛Q 

bidders for each subtask 𝜏Q) and (2) there are not enough agents with qualified 

capabilities bidding on the task to form a collaborative team. Hence, we use two 

probabilities to estimate the uncertain task assignment. Recall that 𝑃Èo(T) is the 

probability that the agent can win a submitted bid (i.e., the agent is one of the top 𝑛Q 

bidders for some subtask 𝜏Q).  𝑃�bb(𝑇|𝑤𝑏) is the probability that the task will be 

auctioned off (i.e., enough agents with qualified users bid on the task to form a 

collaborative team), conditioned on the event that the agent wins the bid. 

For each task, the admin agent will disclose the auction result immediately after the 

auction. The result is contained in two hash maps: (1) subtaskWinningAgentMap and (2) 

subtaskAssignmentMap. Both hash maps map the subtask id to an arraylist of agent ids. 

When examining the subtaskWinningAgentMap, an agent finds the arraylist using the 

subtask id of the subtask it bid on, and then tries to find its id in this arraylist. If its id is 

found in the list, then the agent won the bid (i.e., it was ranked the as the top 𝑛Q bidders, 

and was selected for performing the subtask). Otherwise, it lost the bid. Notice that 

winning the bid does not guarantee the agent can get the subtask. Whether the task can be 

auctioned off or not depends on if enough qualified agents for each subtask can be found. 

If one subtask fails to have enough number of qualified agents, then the whole task fails 

to be auctioned off. In the case that the task fails to be auctioned off, arraylists in the 

subtaskAssignmentMap will be empty.  Agents examine the subtaskAssignmentMap in 

the same way to find out if they get the subtask assignment or not.  
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In order for an agent to learn 𝑃Èo(𝑇), it stores the tasks it has ever attempted (the 

bids) with the bidding results (i.e., (1) whether it won the bid and (2) whether it was 

assigned the subtask) found in subtaskWinningAgentMap and subtaskAssignmentMap in 

agentbidingList. Then the agent computes the Euclidean distance between the task 𝑇 and 

all the tasks in the agentbidingList using the 𝑞𝑡Q(the quality threshold this subtask 𝜏Q 

requires and 𝑛Q (the minimum number of qualified agents this subtask 𝜏Q requires) values 

in subtasks 𝜏Q ∈ 𝑇 to find the most similar s tasks. In our simulations, we set 𝑠 = 5 and 

simulation users can change this value accordingly to fit their research needs. We can 

now apply Eq. 4.18 in Section 4.4.3 to find 𝑃Èo 𝑇  

𝑃Èo 𝑇 =
1

𝑆 𝑇 + 𝜖Èo�
𝑤𝑜𝑛(𝑇�)

K�∈y(K)

+ 𝜖Èo 

here 𝑆(𝑇) is the s-most similar tasks that the agent previously bid on, 𝑤𝑜𝑛(𝑇�)K�∈y(K)  

gives the count of tasks she won among 𝑆(𝑇), 𝜖Èo = 1/ 𝑆 𝑇 + 1  and 

𝜖Èo� = 4/ 𝑆 𝑇 + 1 . 

Similarly, we can calculate 𝑃�bb(𝑇|𝑤𝑏) using the Eq. 4.19 in Section 4.4.3 

𝑃�bb 𝑇|𝑤𝑏 = 

       H
È��(K�)ã�∈Ñ(ã) hË�ÏÏ

� 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)K�∈y(K) + 𝜖�bb  

where 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)K�∈y(K)  gives the count of tasks that she won and also 

auctioned off, 𝜖�bb = 1/ 𝑆 𝑇 + 1  and 𝜖�bb� = 4/ 𝑆 𝑇 + 1 . 

Table 5.7 shows how we compute each component of the above two equations: 
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Table 5.7 Methods of calculating components in Eq. 4.18 and Eq. 4.19 

Component in equation Methods of computing 

𝑆 𝑇  

Compute the Euclidean distance between the task 𝑇 and all 
the tasks in the  agentbidingList using the 𝑞𝑡Q	and 𝑛Q  

values in subtasks 𝜏Q ∈ 𝑇 to find the most similar s tasks. 
We set 𝑠 = 5 in our simulations, hence 𝑆 𝑇 = 5. 

𝑤𝑜𝑛(𝑇�)
K�∈y(K)

 
Go over the agentbidingList and sum over the bidding 

results for the tasks 𝑇� ∈ 𝑆(𝑇). Recall that agentbidingList 
stores all the bidding history, including the bidding results 

and task information. 

𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)
K�∈y(K)

 
Similar to the method for finding 𝑤𝑜𝑛(𝑇�)K�∈y(K) . Go 

over the agentbidingList and sum over the bidding results 
for the tasks 𝑇� ∈ 𝑆 𝑇 . If the bidding result for the task is 

marked as auctioned off, then add 1 to the Sum. 

 

5.8 Learning 

We focus on two types of learning in our simulation, learn by doing and learn by 

observation. Our simulator has two implementations of both learning type, and they are 

similar in nature but are based on different research papers.  

The first implementation was used in Chen et al. (2015) and is discussed in detail in 

Section 3.3.4. The learning by doing algorithm is based on Jumadinova et al., (2014). The 

learning by observation algorithm was given by us and is based on Vygotsky’s zone of 

proximal development (ZPD) theory (Vygotsky, 1978). We include the equations and 

code snippet for this implementation below. 
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The following equations are from Section 3.3.4, Eq. 3.1 and Eq. 3.2 were used for 

calculating agent 𝑎V′𝑠 capability gain on capability	𝑘 and for calculating the capability 

gain for agent 𝑎a observing agent 𝑎l successfully completing a subtask 𝑘 respectively:  

𝐺𝑎𝑖𝑛_`ab 𝑎V, 𝑘 =
𝜂

𝑐𝑎𝑝V,Q + 𝜀
 

where 𝜂 is a constant denoting the increment in knowledge from self-learning and 𝜀 is a 

small number in case 𝑐𝑎𝑝V,Q= 0. 

𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘 =

		
0																																																																			𝑖𝑓	𝑥 < 0			

−
𝛽
𝛼I 𝑥

I + 2
𝛽
𝛼 𝑥																																			𝑖𝑓	0 ≤ 𝑥 < 𝛼	

−
𝛽

𝛼 − 1 I 𝑥
I +

2𝛼𝛽
𝛼 − 1 I 𝑥 +

𝛽 1 − 2𝛼
𝛼 − 1 I 			𝑖𝑓	𝛼 ≤ 𝑥 < 1

																			

		 

where 𝑥 is the capability difference between agent 𝑎l and agent 𝑎a, 𝑥 = 𝑐𝑎𝑝l,Q −

𝑐𝑎𝑝a,Q		and 𝛽 is the maximum learning gain that 𝑎a can acquire from observing agent 𝑎l, 

and α is the capability difference that gives the maximum learning gain. The following 

algorithm (Algorithm 5.2) was used for agents to calculate the learning gains and update 

its capabilities after the completion of the task in Chen et al. (2015). 
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Start Algorithm UpdateCapabilities () 

1.  𝑚	 ← 	𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑇ℎ𝑒𝐴𝑔𝑒𝑛𝑡𝐵𝑖𝑑𝑓𝑜𝑟 
2.  𝑇	 ← 	𝑇ℎ𝑒	𝑡𝑎𝑠𝑘	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑	𝑖𝑛	𝑚 (note that # = {𝜏H, 𝜏I,⋯ , 𝜏 K }) 

3.  𝑇� ← 𝜏Q 	𝜏Q ∈ 𝑇	𝑎𝑛𝑑	𝑎𝑔𝑒𝑛𝑡	𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑	𝑖𝑛	} 
4. 𝑇�� ← 𝑇	\	𝑇� //Set of subtasks the agent observed 
5. Foreach subtask 𝜏Q ∈ 𝑇′ Do //calculate learning by doing gain 
6.  𝑎a ← 𝑎𝑔𝑒𝑛𝑡	𝑖𝑡𝑠𝑒𝑙𝑓 

7.   If 𝑐𝑎𝑝a,Q + 𝐺𝑎𝑖𝑛_`ab 𝑎a, 𝑘 > 1 
8.    𝑐𝑎𝑝a,Q ← 1 
9.   Else 
10.    𝑐𝑎𝑝a,Q ← 𝑐𝑎𝑝a,Q + 𝐺𝑎𝑖𝑛_`ab 𝑎a, 𝑘  
11.   End 
12.  End 

13. Foreach subtask 𝜏Q ∈ 𝑇′′ Do //calculate learning by observation gain, only learn from 
the one    who gives the max observing gain 

14.  Set 𝐴 ← agents assigned for 𝜏Q  
15.  𝑀𝑎𝑥𝐺𝑎𝑖𝑛 ← 0 
16.  Foreach 𝑎l ∈ 𝐴 
17.   If  𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘 > 𝑀𝑎𝑥𝐺𝑎𝑖𝑛 
18.    𝑀𝑎𝑥𝐺𝑎𝑖𝑛 ← 𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘  
19.   End 
20.  End 
21.  If 𝑐𝑎𝑝a,Q + 𝑀𝑎𝑥𝐺𝑎𝑖𝑛 > 1 
22.   𝑐𝑎𝑝a,Q ← 1 

23.  Else 
24.   𝑐𝑎𝑝a,Q ← 𝑐𝑎𝑝a,Q + 𝑀𝑎𝑥𝐺𝑎𝑖𝑛 
25.  End 
26. End 

End Algorithm 
Algorithm 5.2 Algorithm for calculating the learning gains and updating capabilities 

	

The second implementation was used in Chen et al. (2016) and is discussed in 

Section 4.3. In this implementation we use the exponential learning equation for success-

based learning (Leibowitz et al., 2010) for learning by doing: 

𝛥��𝑐𝑎𝑝«,Q = 𝑐𝑎𝑝«,Q = 𝛼�� ∙ 𝑐𝑎𝑝«,Q ∙ 1 − 𝑐𝑎𝑝«,Q  
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The learning by observation algorithm was based on Bandura’s social cognitive 

learning theory (1986, 2004): 

𝛥�o_𝑐𝑎𝑝«,a = 		𝑝 0 ≤ 𝑞𝑡a − 𝑐𝑎𝑝V,a < 𝛽
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝛽 is the threshold under which 𝑞𝑡a − 𝑐𝑎𝑝«,a	is small enough for learning by 

observation to take place and  

𝑝 = 𝛼�o_ ∙ 𝑞𝑡a − 𝑐𝑎𝑝«,a ∙ 𝛽 − 𝑞𝑡a − 𝑐𝑎𝑝«,a  

Agents uses an algorithm very similar to Algorithm 5.2 to update their learning 

gains, except (1) now they use the above equation variants to calculate gains from 

learning by doing and learning by observation, and (2) they only observe the subtask—

instead of all subtasks performed by teammates—that gives the maximum learning by 

observation gain.  

5.9 Configurable Parameters 

There are different configuration parameters that can be changed, which enables 

different type of experimentation and tests within the multiagent ad hoc team formation 

problems. All the configuration parameters are discussed in remaining portion of this 

section. Table 5.8 shows a summary of the configurable parameters as well as their value 

ranges. 
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Table 5.8 Configurable parameters and their value ranges 
Parameters Category Parameter Specifications 

Subtasks Configuration for 
individual tasks. 

Number of Subtask >=1subtask, 
Minimum Quality Threshold per Subtask: [0.0 - 1.0] 
Minimum Number of Agent Required per Subtask 

>=1agent 

Agent Makeup Configuration Percentage of Agent Type : [Any combination adding 
up to 100%] 

Environmental Openness Agent Openness: [0.0 – 1.0] 
Task Openness: [0.0 – 1.0] 

Task Selection Strategies Built-in Strategies : [1-10] 
Custom Strategies : As many as required 

Simulation Length >= 1 tick 

AO/TO Perception Sharing, No Sharing, and Informed 

No. of Initial Non-Zero 
Capabilities >= 1capbability 

Tick to Finish >= 1tick 

Number of Agents >= 1agent 

AO implementation 1 or 2 

TO implementation 1, 2 or 3 

5.9.1 Subtasks Configuration for Individual Tasks 

The numbers and variety of tasks within the simulation environment are 

configurable. Tasks configuration includes all the properties of tasks like total number of 

tasks available, and distribution of tasks difficulty. There is also a more granular control, 

where the properties of each task within a task pool can also be modified. For example, 

each task can be modified in terms of (1) the number of subtasks in a task, (2) the 

minimum quality threshold that agents are required to solve a subtask, and (3) the 

minimum number of agents required to solve each subtask. This configuration allows 
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researchers to modify tasks based on the environment they are modeling which can 

contain tasks which are almost identical to very different, or tasks which are very easy to 

solve to very difficult to solve.  

5.9.2 Agent Makeup Configuration 

The number and types of agents can also be configured in MAAHTFormS. This 

configuration allows simulation to contain different mixtures of expert, average, and 

novice agents. Moreover, agents can be generated based on certain 

mathematical/statistical distributions, allowing researchers to create simulation with truly 

varied agent makeup. In order to track agents’ activities throughout the simulation, some 

agents can be configured to not be removed from the simulation at all. This configuration 

parameter can thus control how many skills agent can have initially, what sort of agent 

mixtures the environment can have, etc. 

5.9.3 Environmental Openness Configuration 

MAAHTFormS also allows the control of both agent and task openness. Thus it is 

possible to set agent and task openness to any value between 0.0 to 1.0 and experiment 

with different sets of openness values. 

5.9.4 Task Selection Strategies 

Based on the weights given to learning and solving tasks, MAAHTFormS 

technically allows an infinite number of task selection strategies, with strategies using 

AO only, TO only and both AO and TO, or neither. We provide some examples of task 

selection strategies in Section 3.3.5, which used different weight combinations for 
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learning and solving tasks, such as 𝑤�	= 0.25 and 𝑤y	= 0.75, 𝑤�	= 0.5 and 𝑤y	= 0.5 etc. In 

all cases, the weights of learning and solving tasks sum to exactly 1. This configuration 

parameter allows abstracting different task selection strategies based on how agents will 

pursue immediate vs. future task rewards. We also include some task selection strategies 

that is used by Chen et al. (2016) from Section 4.4.  By mapping those choices into the 

weight parameters for solving and learning task, creating new task selection strategies 

becomes an easy task. 

5.9.5 Simulation Length 

This parameter controls the length of the simulation, which makes it possible to 

perform simulation for different length of time. The unit for the simulation is “tick”, 

which is one cycle of operations. For example, in our simulation, when all individual 

agents finish their cycle once (Section 5.4.2) and the admin agent finishes its cycle once 

(Section 5.4.1), that is the end of 1 tick.  In ad hoc teams, a short simulation length might 

prevent agents from effectively utilizing the capability they learn whereas a longer 

simulation might allow them to actually use their gained capabilities. Some emergent 

behaviors might need longer simulation lengths, e.g. 1000 ticks, to be observed. So, this 

parameter can be modified and changed, to study agent behavior, overall system behavior 

etc. for different period of time. 

5.9.6 AO/TO Perception Configuration 

Since we have implemented different options to perceive openness as described in 

Section 5.3.4, this configuration enables selecting different mechanisms to perceive 

openness by the agents.  Here we briefly summarize these perception options. 



www.manaraa.com

“Sharing” allows agents to share their observations on the agents they worked with 

(for agent openness) or on the tasks they encountered, e.g. the tasks they saw on 

blackboard as well as the tasks they solved (for task openness). This option makes the 

modeling of openness a team effort and every agent has the same openness perception, 

since they all have the same information.  

In “No Sharing”, agents keep information to themselves. There is no 

communication between agents about their observations, agents model openness based on 

their entirely own observations. This option usually results in agents having inaccurate 

openness perceptions, because each agent has limited observations of the entire 

environment.  

The “Informed” option allows agents be given the actual openness instead of agents 

modeling openness themselves.  

Depending upon what kind of agents and environment is being modeled, it makes 

sense to have different perception models for openness, as some times agents might 

implicitly share some of the openness information to the other agents in the system 

whereas other times there might be no communication, implicit or explicit.  

5.9.7 Number of Initial Non-Zero Capabilities 

Since the number of initial non-zero capabilities represents how many different 

types of capabilities an agent possesses before the start of the simulation, this parameter 

models the overall initial capability of the entire agent population. This parameter can be 

configured to represent a whole spectrum of agent capability makeup from agents which 

are very knowledgeable at the beginning of the experiments to agents which know next to 
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nothing.  If the number of initial non-zero capabilities is too small, e.g., 1, a lot of tasks 

might not be able to be solved due to lack of expertise in the environment. However, too 

much expertise in the environment (the number of initial non-zero capabilities is too 

large, e.g., 20) will increase the competition among agents. 

5.9.8 Tick to Finish 

In our current design, all the tasks in the environment use the same number of ticks 

to finish. Tick to Finish refers to the number of ticks it requires to finish each task.  The 

significance of this parameter is that if an agent is involved in completing a task, then it is 

not allowed to bid for another task or subtask.  So, the longer the value is, the fewer idle 

agents are available in the environment at each tick, and vice versa. 

5.9.9 Total Number of Agents (𝑵𝒂) 

This parameter specifies the total number of agents in a simulation at each tick. 

Based on the AO parameter, old agents are removed and new agents are added by the 

auctioneer (admin) during the simulation; but the total number of agents, at each tick, is 

always 𝑁?. 

5.9.10 AO/TO implementation 

We include two AO/TO implementations for users to choose from. The first 

AO/TO implementation is used in Chen et al. (2015) and the second AO/TO 

implementation is adapted by Chen et al. (2016). Additionally, a third TO 

implementation is also available for users to choose from. The details of all AO/TO 

implementations can be found in Section 5.3.3 of this chapter. 
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5.10 Data Generated from the Simulator 

We log our simulation outputs and then run a program to do the analysis and 

produce a report. We mainly focus on logging individual agent’s behavior such as what 

task it bid on, whether it won the bid or not, and whether it get assigned any subtask etc. 

Table 5.9 shows the variables we log. 

Table 5.9 The variable values logged and its description for the simulation 
Variable Name Description 

tick The current tick of the simulation 

id The id of the agent 
numTaskInvolved The total number of tasks that this agent get assigned 

during the simulation 

taskAssignmentAtCurrentTick The task id of the task that this agent was assigned to at 
current tick. If no assignment, this number will be 0 

reward The task reward this agent received for help finishing 
the current task 

taskbidAtCurrentAtCurrentTick The task id of the task that this agent bid on at current 
tick. If agent does not bid, this number will be 0 

numBidsSumitted The total number of bids this agent submitted during 
the simulation 

numBidsSumbittedAndWon The total number of winning bids during the simulation 

selectedForCurrentBid A Boolean value indicating whether this agent won the 
current bid or not 

taskTypeBidOn The task type id this agent bid on at current tick 

randomSeed The random seed for current simulation 

agentOpenness The agent openness for current simulation 

taskOpenness The task openness for current simulation 

option The task selection strategies this agent is using in 
current simulation  

numAgentsAssigned The total number of agents the current task (the task 
this agent bid on) uses, if this task did not get 
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auctioned off, the number will be 0. Notice: one agent 
could get multiple subtasks. Hence this number does 
not always equal the total number of agents the current 
task needed 

numAgentsRequired The total number of agents the current task (this agent 
bid on) needed 

taskReward The task reward of the current task (this agent bid on) 

selfGain The capability gained through doing the subtask  
observationGain The capability gained through observing its teammates  

 

The log files we get from simulation are very large due to the number of variables 

we log. For one configuration of a simulation, the log file is about 1 MB if we choose the 

number of ticks to be 100. If we choose the number of ticks to be 1000, then the size of 

the log file is about 10MB. Sometimes we do need to set the number of ticks to 1000 or 

even bigger number to see the emergent behavior. For a full simulation, which means 

includes every agent openness, task openness, and option combination, we will get as 

many as 5880 log files. (we set AO/TO= [0,0.01,0.02,0.05,0.1,0.2,0.5], Option= [1,2,3,4] 

and use 30 random seeds, hence 7×7×4×30 = 5880). Therefore, for a 100-tick full 

simulation, our log files size could be almost 6 GB, and near 60 GB for a 1000-tick full 

simulation. The size of large log file is a problem and created a challenge for us, since we 

do thousands of such simulations, and will run into storage problems very quickly. We 

noticed that some of the variables has the same value throughout the simulation hence it 

makes sense to exclude them from the log file and put them into the file name to reduce 

log file size. Such variables include RandomSeed, AgentOpenness, TaskOpenness, and 

Option. After such change, our log file name looks like 

“AgentOutput_AO[x]TO[y]Op[z]_[timestamp]”, where “x” is the agent openness value, 
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“y” is the task openness value, “z” is the task selection strategy number that all the agents 

use during the simulation, and the “timestamp” is the date and time the simulation started. 

In addition to that, we also included a boolean variable called “agentOutputShort” in 

OutputClass.java. If it’s value is set to be true, then we only log the variable values in 

Table 5.10. 

Table 5.10 Variable values logged and its description for the simulation when 
“agentOutputShort” is set to be “ture” 

Variable Name Description 

tick  The current tick of the simulation 

id  The id of the agent 

taskAssigned Whether this agent get assigned to a task or not. 1 means has an 
assignment, 0 means not. 

bidsWon Whether this agent’s bid won or not. 1 for yes, 0 for no.  

taskReward The task reward for the task this agent bid on  

rewardGot The task reward this agent got after finishing this task it bid on 

selfGain The capability gained through doing the subtask 

obsGain The capability gained through observing its teammates 
 

After taking the above actions for reducing the log file size, we successfully 

reduces the log file size down to 400 KB for a 100-tick simulation, and about 4 MB for a 

1000-tick simulation. Hence for a 100-tick full simulation, our log files size would be 6 

GB, and for a 100-tick full simulation, the files size is about 2.4 GB, and 24GB for a 

1000-tick simulation. After running the analyzing program, we zip the log files for 

archive purposes. The zip process reduces the file size more than 90%, and saves us a lot 

of resources. 
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5.11 Scripts for Running on Super Computer  

We utilize the Holland Commuting Center (HCC)’s super computer to run our 

simulations. The documentations on how to use HCC super computers can be found on 

https://hcc-docs.unl.edu/display/HCCDOC/HCC+Documentation.  

Our simulation program is written in Java, hence we make a jar file and put it on 

the super computer. We can run our program by executing the following line in terminal 

window:  

 “java -jar [jar file name] [AO] [TO] [your properties file] 

[output directory]” 

 where “jar file name” is our simulation jar file’s name, “AO” is the agent openness 

value, “TO” is the task openness value, “your properties file” is the properties file that 

contains all the task information (our task pool), and “output directory” is the directory 

where user wants to store the output log files. The other parameters are all set in 

Parameters.java file. We set the program to take the arguments this way in order to take 

advantage of HCC’s super computer.  

In order to use the HCC’s super computer, we have to make a SLURM file and 

submit the SLURM job. The following code snippet in Figure 5.5 shows an example 

SLURM file we used for one part of our simulation. Notice that we can submit as many 

SLURM files as we need, hence we can split our simulations into many SLURM jobs to 

let them run simultaneously. To submit the SLURM file, we just type “$sbatch 

[filename].slurm”, where “filename” is your SLURM file name.  
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#!/bin/sh 

#SBATCH --time=3:00:00          # Run time in hh:mm:ss 

#SBATCH --mem-per-cpu=8G          # Maximum memory required per CPU (in megabytes) 

#SBATCH --job-name= “20cap_50_50” 

#SBATCH --error=/work/soh/bchen/ad-hoc/20capAO0.5TO0.5.err 

#SBATCH --output=/work/soh/bchen/ad-hoc/20capAO0.5TO0.5.err 

module load java 

java -jar ad-hocOp1.jar 0.5 0.5 20choose5.properties /work/soh/bchen/ad-

hoc/20cap/20cap1000tick 

Figure 5.5 Sample SLURM file we used in part of our simulation 
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Chapter 6: Conclusions and Future Work 

In this thesis, first, we have developed an auction-based multiagent simulation 

framework to study/investigate the impact of Agent Openness (AO) and Task Openness 

(TO) in an multiagent task execution scenario. The Java-based simulator that we have 

developed is called Multi Agent Ad-Hoc Team Formation Simulator (MAAHTFormS).  

We conducted comprehensive experiments, established the importance and necessity of 

considering AO and TO in ad hoc team formation problem, and also discovered the 

impact of AO and TO on agent learning and task completion under varying degrees of 

environmental openness in our task execution scenario. We considered the aspect of 

agents learning and evolving, and proposed several agent task selection strategies to 

leverage the environmental openness. Our study has gained insights into the relationships 

between AO and TO. We have seen that AO and TO change the way teams are formed in 

ad hoc setting. When making decisions on which teams to join, agents should consider 

the possibility of new agents and tasks entering the environment. Furthermore, we have 

seen that AO impacts learning. AO is helpful to boost the learning when new tasks 

appears in the environment as new tasks requires new capabilities to solve. We have also 

seen that TO makes tasks more challenging for agents to solve.  

Second, we have studied an agent-based collaborative human task assignment 

problem, which is a direct application of ad hoc team formation problem in open systems. 

We have developed solutions for agents to maximize their users’ rewards and learning 

gains over sequence of tasks under the environmental openness (AO and TO). More 

specifically, we developed a probabilistic model, which agents learns about to guide its 
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decision making in maximizing human user reward and learning gains and we modeled 

human learning and incorporated it into the agent’s reasoning on how to acquire tasks for 

its user. we have shown through empirical experiment that our Uncertainty and Learning-

Aware (ULA) agents are capable of choosing tasks maximizing expected utilities taking 

into account the uncertainties and learning.  

Third, we have developed the aforementioned simulator called Multi Agent Ad-

Hoc Team Formation Simulator (MAAHTFormS), which can be used for very 

comprehensive multiagent ad hoc team formation simulation. It simulates the task 

openness and agent openness which can be used to analyze and understand the 

interrelationships between several important factors in the realm of this problem. More 

specifically, MAAHTFormS allows researchers to study team formation in an open 

environment, to study develop and test task selection strategies while considering 

openness, and to study the impact of diversity, among many other things.  

6.1 Future Work 

6.1.1 Immediate next Steps  

a. Find better ways to model AO  

In our current framework, agents model both agent openness and task openness. 

Considering both types of openness, the idea was for an agent to develop more effective 

task selection strategies to better leverage them. However, we were only able to get good 

modeling for task openness. The model for agent openness is not quite accurate so far.  

This is because agents can observe the blackboard for task information so they can have 



www.manaraa.com

very good ideas about the newly listed tasks as well as the tasks that disappeared. The 

only time that an agent will miss the task information is when it was executing tasks. 

Hence the model for task openness is very close to the actual value. However, agents 

only know other agents through their collaborations in task solving. Due to lack of pre-

coordination and the limited agent information, the perceived agent openness was far off 

from the actual value. For the proposed task selecting strategies, agents are given the AO 

and TO. We will explore more realistic ways to perceive openness, such as (1) 

NoSharing, where agents model on their own without sharing information with each 

other, (2) Sharing, where agents share information to model the openness together. This 

will be a key next step to take in the future, since sensing the environment and making 

autonomous decisions are the fundamental functions of agents. We give agents the AO 

and TO information in our current research to simplify the complicity of this problem as 

our first step to investigate the impacts of the AO and TO in ad hoc team formation.  

b. Different task assignment policies 

Our current simulation framework is auction-based. The auctioneer collects all the 

bids and assigns the best agents for the tasks. If an agent does not get the task it bids for, 

then the agent does not perform any work and will have to wait until the next auction 

round. In a more realistic scenario, this agent may still have other skills which can be 

used to team up with other agents who also do not get assigned tasks, and together could 

accomplish some other tasks.  We can explore new task assignment policies to utilize this 

under-utilized workforce at each time tick. We believe with the new task assignment 

policies, there will be more tasks solved in unit time (per tick per agent) and more 
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learning will occur. This might counter some negative impact of TO, since there will be 

more expertise can be utilized in the system. 

c. Different bidding protocols  

In our current design, an agent only bids for one best task in the auction according 

to the algorithm with which it is deployed. We can explore other bidding protocols such 

as allowing agents to submit multiple bids for a single auction. For example, the 

algorithm can give the ranks of the preferred tasks, and the system will then allow agents 

to have first preferred bid, second preferred bid, etc. We have already seen that there are 

lots of tasks did not get auctioned off due to the competition. Many agents try to bid on 

the same task but the auctioneer only chooses the best required number of agents for the 

task. In this case, lots of agents who lost the bid got no task to do for that round of 

auction. This results in good expertise get wasted. Since there were many tasks that the 

agents who lost bids are more than capable of, if they have bidden on these tasks, they 

could have gotten the task. We believe a well-designed new bidding protocol could help 

ease this phenomenal of expertise waste due to the completion, and hence boost the 

system performance in general.     

d. Consumption of time on tasks 

As mentioned in Chapter 5, our current implementation assumes every task takes 

the same time, which is 1 tick, to be completed. This is not quite realistic as in the real 

world different tasks have different levels of complexity, and they consume different 

resources including time. It is obvious that simpler tasks can be done faster and harder 

tasks need more time to be completed. This should be considered in the simulation to 
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make it more realistic. However, this will add a lot of complexity as well into the 

problem of estimating the long term rewords, since sometimes completing several easy 

tasks can gain more immediate rewards than spending more time on complex tasks, but 

the complex tasks may gain the agent more potential rewards if the task have more 

learning opportunities.  

6.1.2 More “further” next Steps 

In terms of further next steps, we have several considerations. 

a. Consider teaching  

We will consider the impact of both teaching and learning while modeling agent’s 

behavior, particularly incorporating the fundamental game-theoretic work from Stone, 

Gan, & Kraus (2010). This will require agents to consider the potential gain from 

teaching another agent, as opposed to only considering potential gain from learning from 

other. Indeed, by teaching other members in the team can gain the teacher agent long 

term reward when the learner agent can stay long enough to implement and improve the 

team’s utility with what it has learned. Hence, agent openness is a key factor for the 

teacher agent to make decisions on whether to teach or not teach. If the learner agent will 

leave shortly, teaching would not be beneficial. Instead, the teaching agent will be better 

off by improving its own expertise or to complete more tasks to gain immediate rewards. 

b. Consider agent reliability 

We will consider agent reliability in terms of agent possibly failing to complete 

tasks.  This can be built into agent reasoning when making the bids for tasks as part of 



www.manaraa.com

solution robustness consideration. Agents have little or no knowledge of the capabilities 

of other agents in the ad hoc team formation environment, agents can build trusts among 

themselves. In addition, agents can build its reputations of being reliable, or not 

accountable. When we allow agents to submit multiple bids, if a potential teammate is not 

accountable, then instead of risking the task, a better choice will be to decline the bid and 

wait for the results of other bids. In agent reasoning, when an agent try to select a task to 

bid for, the best potential utility is based on also a probability of successfully executing 

the task. We can include a modeling of agent reliability in terms of (1) weather the 

potential teammate will be able to carry out the subtask assigned to them successfully, (2) 

whether the potential teammates will accept the subtasks. This will make agents smarter 

in terms of agent reasoning, and make our system more robust. 

c. Investigate diversity  

We plan to study the impacts of the amount of diversity in the task types and in the 

agents’ capabilities.  For example, if the environment only has a small set of highly 

capable agents/human to begin with, will the learning be able to counter the impacts of 

openness? How many diverse expertise will be good enough for the system in the current 

open environment to successfully deal with the openness? Diversity in agent/human 

expertise can affect how the system adapts. Likewise, diversity of task types can affect 

how agents/human learn and their ability to complete tasks. Too much diverse expertise 

in agent population can cause agents to spread their bids to much so that only a few tasks 

can be auctioned off or completed as they try to maximize their long-term utility to 

become more qualified in more different tasks. Maybe agents should consider when to 

learn and when not to learn based on how diverse the tasks are as well as how diverse the 
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agents are. In addition, agent may need to decide on whether to be an expert in one area, 

or to learn more skills to be a generalist.   
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