
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

6-2017

INVESTIGATING AGENT AND TASK
OPENNESS IN ADHOC TEAM FORMATION
Bin Chen
University of Nebraska - Lincoln, franky_chen2008@hotmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Chen, Bin, "INVESTIGATING AGENT AND TASK OPENNESS IN ADHOC TEAM FORMATION" (2017). Computer Science
and Engineering: Theses, Dissertations, and Student Research. 129.
http://digitalcommons.unl.edu/computerscidiss/129

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/129?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

INVESTIGATING AGENT AND TASK OPENNESS IN ADHOC TEAM

FORMATION

by

Bin Chen

A THESIS

Presented to the Faculty of

The Graduated College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Leen-Kiat Soh

Lincoln, Nebraska

June, 2017

www.manaraa.com

INVESTIGATING AGENT AND TASK OPENNESS IN ADHOC TEAM

FORMATION

Bin Chen, M.S

University of Nebraska, 2017

Advisor: Leen-Kiat Soh

When deciding which ad hoc team to join, agents are often required to consider

rewards from accomplishing tasks as well as potential benefits from learning when

working with others, when solving tasks. We argue that, in order to decide when to learn

or when to solve task, agents have to consider the existing agents’ capabilities and tasks

available in the environment, and thus agents have to consider agent and task openness—

the rate of new, previously unknown agents (and tasks) that are introduced into the

environment. We further assume that agents evolve their capabilities intrinsically through

learning by observation or learning by doing when working in a team. Thus, an agent will

need to consider which task to do or which team to join would provide the best situation

for such learning to occur. In this thesis, we develop an auction-based multiagent

simulation framework, a mechanism to simulate openness in our environment, and

conduct comprehensive experiments to investigate the impact of agent and task openness.

We propose several agent task selection strategies to leverage the environmental

openness. Furthermore, we present a multiagent solution for agent-based collaborative

human task assignment when finding suitable tasks for users in complex environments is

made especially challenging by agent openness and task openness. Using an auction-

based protocol to fairly assign tasks, software agents model uncertainty in the outcomes

www.manaraa.com

of bids caused by openness, then acquire tasks for people that maximize both the user’s

utility gain and learning opportunities for human users (who improve their abilities to

accomplish future tasks through learning by experience and by observing more capable

humans). Experimental results demonstrate the effects of agent and task openness on

collaborative task assignment, the benefits of reasoning about openness, and the value of

non-myopically choosing tasks to help people improve their abilities for uncertain future

tasks.

www.manaraa.com

ACKNOWLEDGEMENTS	

First, I would like to sincerely express my gratitude to my advisor Dr. Leen-Kiat

Soh. It is his continuous support, meaningful feedback, insightful suggestions, and

professional guidance that made this research successful. I am so thankful that I have

such an adviser, a mentor, and a friend in my life.

Second, I thank my colleagues for their willingness to have meaningful discussions

and critiques which improved my work. I especially thank Xi Chen for his collaborating

in developing the simulator for this research and Dr. Adam Eck for helping with the

formulation of the theory behind the agent models.

Third, I acknowledge the resources available at the University of Nebraska-Lincoln

that helped me completing this research, including research papers, journals and the super

computers hosted by Holland Computing Center that made available to me.

Last but not the least, I thank my wonderful wife Xiao Liang for her love, support,

and sacrifice which made me carry out my research.

www.manaraa.com

Table	of	Contents	

Chapter	1:	Introduction	...	13	

1.1	 Problem	...	13	

1.2	 Motivation	...	17	

1.3	 Proposed	Solution	..	19	

1.4	 Contributions	...	20	

1.5	 Overview	...	21	

Chapter	2:	Background	and	Related	Work	...	22	

2.1	 Multiagent	Ad	Hoc	Team	Formation	..	23	

2.2	 Multiagent	Task	Allocation	..	28	

Chapter	3:	Investigation	on	Agent	and	Task	Openness	...	33	

3.1	 Introduction	...	33	

3.2	 Related	Work	...	36	

3.3	 Simulation	Framework	...	38	

3.3.1	 Multiagent	System	Design	...	38	

3.3.2	 Openness	...	39	

3.3.3	 Tasks	and	Capabilities	..	41	

3.3.4	 Learning	...	42	

3.3.5	 Task	Selection	Strategies	...	45	

3.4	 Results	...	51	

3.4.1	 Configuration	Parameters	...	51	

3.4.2	 Experiments	and	Results	...	55	

3.5	 Conclusions	..	63	

www.manaraa.com

Chapter	4:	Collaborative	Human	Task	Assignment	for	Open	Systems	66	

4.1	 Introduction	...	66	

4.2	 Collaborative	Task	Assignment	Problem	..	70	

4.2.1	 Problem	Model	..	70	

4.2.2	 Modeling	Environment	Openness	...	74	

4.3	 Human	Learning	Model	..	76	

4.4	 Solution	...	80	

4.4.1	 Estimating	Expected	Task	Rewards	...	80	

4.4.2	 Approximating	Future	Task	Rewards	...	81	

4.4.3	 Estimating	Uncertain	Task	Assignment	...	84	

4.5	 Experimental	Setup	..	86	

4.6	 Results	...	88	

4.6.1	 Impact	of	Agent	and	Task	Openness	...	88	

4.6.2	 Comparison	of	Agent	Types	...	93	

4.6.3	 Summary	..	94	

4.7	 Conclusions	and	Future	Work	...	95	

Chapter	5:	Implementation	...	97	

5.1	 Introduction	...	97	

5.2	 Related	Work	...	99	

5.3	 Simulation	Framework	...	101	

5.3.1	 Framework	Design	...	102	

5.3.2	 Tasks	and	Capabilities	..	103	

5.3.3	 Openness	...	104	

	 Agent	Openness	..	104	

www.manaraa.com

	 Task	Openness	...	105	

5.3.4	 Agent	Perceiving	Openness	...	106	

	 Perceiving	Agent	Openness	...	106	

	 Perceiving	Task	Openness	...	108	

	 Different	Considerations	for	Perceiving	AO	and	TO	..	110	

5.4	 Agent	Design	(Agent	Type)	...	111	

5.4.1	 Admin	Agent	..	112	

5.4.2	 Individual	Agents	...	114	

5.5	 Task	Design	..	116	

5.5.1	 Subtask	Difficulty	Level	..	117	

5.5.2	 Task	Difficulty	level	..	118	

5.6	 Blackboard	and	Auction	Design	..	121	

5.7	 Probabilistic	Model	..	124	

5.8	 Learning	...	127	

5.9	 Configurable	Parameters	...	130	

5.9.1	 Subtasks	Configuration	for	Individual	Tasks	..	131	

5.9.2	 Agent	Makeup	Configuration	..	132	

5.9.3	 Environmental	Openness	Configuration	..	132	

5.9.4	 Task	Selection	Strategies	...	132	

5.9.5	 Simulation	Length	..	133	

5.9.6	 AO/TO	Perception	Configuration	...	133	

5.9.7	 Number	of	Initial	Non-Zero	Capabilities	..	134	

5.9.8	 Tick	to	Finish	..	135	

5.9.9	 Total	Number	of	Agents	(𝑵𝒂)	..	135	

www.manaraa.com

5.9.10	 AO/TO	implementation	...	135	

5.10	 Data	Generated	from	the	Simulator	...	136	

5.11	 Scripts	for	Running	on	Super	Computer	..	139	

Chapter	6:	Conclusions	and	Future	Work	...	141	

6.1	 Future	Work	...	142	

6.1.1	 Immediate	next	Steps	..	142	

6.1.2	 More	“further”	next	Steps	...	145	

	

	 	

www.manaraa.com

TABLE	OF	FIGURES	

FIGURE	3.1	TASK	SELECTION	STRATEGY	WITH	BEST	TASK	COMPLETION	AND	LEARNING	GAIN	PER	AO-TO	COMBINATION	WITH	THE	

NUMBER	OF	NON-ZERO	INITIAL	CAPABILITIES	=	5.	S	=	BEST	PERFORMING	TASK	SELECTION	STRATEGY,	T	=	#	OF	TOTAL	

TASKS	SOLVED,	L	=	TOTAL	LEARNING	GAIN.	..	58	

FIGURE	3.2	TASK	SELECTION	STRATEGY	WITH	BEST	TASK	COMPLETION	AND	LEARNING	GAIN	PER	AO-TO	COMBINATION	WITH	THE	

NUMBER	OF	NON-ZERO	INITIAL	CAPABILITIES	=	1.	S	=	BEST	PERFORMING	TASK	SELECTION	STRATEGY,	T	=	#	OF	TOTAL	

TASKS	SOLVED,	L	=	TOTAL	LEARNING	GAIN.	..	62	

FIGURE	5.1	OVERALL	ARCHITECTURE	OF	THE	MULTIAGENT	SIMULATION	SYSTEM.	...	103	

FIGURE	5.2	THE	LIFECYCLE	OF	THE	ADMIN	OF	THE	ENVIRONMENT	FOR	OUR	MODEL.		THE	ARROWS	SHOW	THE	SEQUENCE	OF	

ACTIONS.	..	113	

FIGURE	5.3	THE	LIFECYCLE	OF	INDIVIDUAL	AGENT	OF	THE	ENVIRONMENT	FOR	OUR	MODEL.		THE	ARROWS	SHOW	THE	SEQUENCE	

OF	ACTIONS.	...	116	

FIGURE	5.4	ADMIN	AND	AGENTS	COMMUNICATING	AND	ALLOCATING	TASKS	THROUGH	BLACKBOARD.	THE	ARROWS	SHOW	

INFORMATION	FLOWS	BETWEEN	THE	ADMIN	AND	BLACKBOARD	AS	WELL	AS	THOSE	BETWEEN	AGENTS	AND	BLACKBOARD.		

THE	SEQUENCE	OF	ACTIONS	IS	DESIGNATED	AS	WELL.	..	122	

FIGURE	5.5	SAMPLE	SLURM	FILE	WE	USED	IN	PART	OF	OUR	SIMULATION	..	140	

	

	 	

www.manaraa.com

Table	of	Tables	

TABLE	3.1	SIMULATION	RESULTS	IN	TERMS	OF	TOTAL	LEARNING	GAIN	ACHIEVED	TO	DETERMINE	FACILITATOR	CONFIGURATION.		

1X	MEANS	THE	NUMBER	OF	AGENTS	REQUIRED	TO	COMPLETE	EACH	SUBTASK	OF	A	TASK	IS	1,	2,	OR	3;	2X	MEANS	IT	IS	2,	

4,	OR	6;	AND	SO	FORTH	..	54	

TABLE	3.2	SIMULATION	RESULTS	IN	TERMS	OF	NUMBER	OF	TASKS	SOLVED	TO	DETERMINE	FACILITATOR	CONFIGURATION.		1X	

MEANS	THE	NUMBER	OF	AGENTS	REQUIRED	TO	COMPLETE	EACH	SUBTASK	OF	A	TASK	IS	1,	2,	OR	3;	2X	MEANS	IT	IS	2,	4,	

OR	6;	AND	SO	FORTH	..	54	

TABLE	4.1	AVERAGE	NUMBER	OF	TASKS	COMPLETED	PER	USER	WITH	STANDARD	ERRORS	(NORMALIZED	BY	USER	LIFESPAN)	90	

TABLE	4.2	AVERAGE	REWARD	PER	USER	WITH	STANDARD	ERRORS	(NORMALIZED	BY	USER	LIFESPAN)	91	

TABLE	4.3	AVERAGE	LEARNING	GAIN	PER	USER	(NORMALIZED	BY	USER	LIFESPAN)	...	92	

TABLE	5.1	THIS	TABLE	SHOWS	THE	CLASSIFICATION	CRITERION	OF	AGENT’S	CAPABILITY	TYPES.	..	115	

TABLE	5.2	THIS	TABLE	SHOWS	THE	CLASSIFICATION	CRITERION	FOR	THE	AGENT	TYPE	BASED	ON	THE	NUMBER	OF	CAPABILITIES	

TYPES	OF	ITS	CAPABILITIES.	...	115	

TABLE	5.3	THIS	TABLE	SHOWS	THE	CLASSIFICATION	CRITERION	FOR	THE	DIFFICULTY	LEVEL	OF	SUBTASKS.	NOTE	THAT	0<Β<Α<1;	

NK	DENOTES	THE	NUMBER	OF	REQUIRED	AGENTS	FOR	SOLVING	A	SUBTASK;	NA	IS	THE	TOTAL	NUMBER	OF	AGENTS	IN	THE	

SIMULATION	ENVIRONMENT.	Α,	Β,	ARE	PARAMETERS.	..	117	

TABLE	5.4	THIS	TABLE	SHOWS	THE	CLASSIFICATION	CRITERION	FOR	THE	DIFFICULTY	LEVEL	OF	TASKS.	HERE	N	IS	THE	TOTAL	

NUMBER	OF	SUBTASKS	THAT	COMPRISE	THE	TASK;	ET,MTAND	HT	ARE	THE	NUMBER	OF	EASY	SUBTASKS,	MODERATE	

SUBTASKS,	AND	HARD	SUBTASKS	RESPECTIVELY.	...	119	

TABLE	5.5	EXAMPLES	OF	TASKS	THAT	ARE	CLASSIFIED	AS	EASY,	MODERATE,	AND	HARD	TASKS.	USING	THE	TASK	DIFFICULTY	

CLASSIFIER,	T1	IS	CLASSIFIED	AS	MODERATE	TASK,	T2,	T3	ARE	HARD	TASKS	AND	T4	IS	AN	EASY	TASK	119	

TABLE	5.6	EXAMPLE	OF	TASKS	THAT	CAN	AND	CANNOT	BE	CONSIDERED	TO	HAVE	THE	SAME	TASK	TYPE	T1	IS	A	MODERATE	

TASK,	T2		IS	A	HARD	TASK,	AND	T3	IS	A	MODERATE	TASK.	T1	AND		T3	ARE	CONSIDERED	AS	HAVING	THE	SAME	TASK	TYPE	

WHILE	T1	AND	T2,	ALSO	T2	AND		T3ARE	CONSIDERED	AS	HAVING	DIFFERENT	TASK	TYPE.	NOTE	THE	SUBTASK	DIFFICULTY	

LEVEL	IS	DETERMINED	BASED	ON	TABLE	5.3	WITH	NA = 200,	AND	SET	Α = 0.015,	AND	Β = 0.01	120	

TABLE	5.7	METHODS	OF	CALCULATING	COMPONENTS	IN	EQ.	4.18	AND	EQ.	4.19	...	127	

www.manaraa.com

TABLE	5.8	CONFIGURABLE	PARAMETERS	AND	THEIR	VALUE	RANGES	..	131	

TABLE	5.9	THE	VARIABLE	VALUES	LOGGED	AND	ITS	DESCRIPTION	FOR	THE	SIMULATION	...	136	

TABLE	5.10	VARIABLE	VALUES	LOGGED	AND	ITS	DESCRIPTION	FOR	THE	SIMULATION	WHEN	“AGENTOUTPUTSHORT”	IS	SET	TO	BE	

“TURE”	..	138	

	

	 	

www.manaraa.com

Table	of	Algorithms	

ALGORITHM	5.1	AUCTION ALGORITHM USED BY ADMIN TO ALLOCATE TASKS	...	124	

ALGORITHM	5.2	ALGORITHM	FOR	CALCULATING THE LEARNING GAINS AND	UPDATING	CAPABILITIES	129	

	

	 	

www.manaraa.com

Chapter 1: Introduction

1.1 Problem

Intelligent agents are capable of sensing the environment, making autonomous

decisions which in turn influence the environment. A multiagent system consists of such

agents that work together cooperatively or competitively towards a common goal.

Multiagent systems provide a strong platform for examining coalition formation and

member interaction. Agents can mirror the operation of people in actual groups.

Modeling how agents form coalitions within the broader group has been an active area in

multiagent systems (Caillou, Aknine, & Pinson, 2002; Onn Shehory & Kraus, 1998; Soh

& Tsatsoulis, 2002). However, the most relevant subarea concerns modeling cooperative

multiagent systems where agents learn to coordinate with their cooperative team

members without having any prior collaboration experience with them (Stone, Kaminka,

& Rosenschein, 2010b), has not been extensively studied. In such a setting, different

agents may have different capabilities and tasks may need varieties of capabilities to be

completed. Furthermore, agents may be programed by others, may or may not be able to

communicate, and teammates are likely sub-optimal. Due to the uncertainty and dynamic

changes of the environment, the ad hoc teams formed may result in inefficient or

ineffective task solutions.

There are many aspects of ad hoc team formation that have been studied, focusing

on learning, leading, and dealing with uncertainties in agent behavior (Agmon, et al.,

2014; Barrett et al., 2012; Jumadinova et al., 2014; Stone, Gan, et al., 2010; Stone,

Kaminka, et al., 2010; Wooldridge, 2009). For example, Stone, Kaminka, et al., (2010b)

www.manaraa.com

proposed ad hoc teams where agents work together without pre-coordination in highly

uncertain and dynamic environments. Stone, Gan, et al., (2010) presented a probabilistic

hill-climbing-based algorithm that allows autonomous agents with heterogeneous

expertise to learn how to coordinate in coalitions that contain unknown agents to solve

collaborative tasks. These research approaches capture a number of the necessary aspects

(e.g., unknown teammates, heterogeneous expertise, and task solution that requires

collaboration) of our coalition formation problem.

However, the emphasis of such ad hoc team play problems is not on how the agent

coalitions themselves form. As we try to study team formation in certain agents, like

human, we need to consider several factors like how human learn from working in a team

as well as observing a teammate. Research done so far, while considering learning

(Barrentt et al. 2012), has not considered the learning that is present when agents—such

as humans—work together in a team. For example, when human agents work together,

it is inevitable that they learn from each other, and occasionally they teach each other.

Indeed, human agents do learn and evolve when they interact and work in a team through

time. Through learning, agents can improve their capabilities so that they can do things

better next time and improve the efficiency of the entire system. It is the learning that

makes agents evolve in a dynamic complex system and adapt to the changes in the

environment. In ad hoc team formation, while prior knowledge of a potential teammate

is not available, it is still possible for an agent to model the types of agents and tasks

likely to be in the environment, and to assume that learning is inevitable when working

together. Such consideration and assumption will influence how agents form ad hoc

teams—in how each decides to join an ad hoc team to help solve a task. Thus, it is

www.manaraa.com

necessary to consider learning when agents work together and its impact in subsequent

tasks.

Furthermore, a key question to ad hoc team formation is how agents should decide

on which teams to join when taking into account the potential rewards or utility of

learning while on a team. In a way, if learning consumes resources or its effectiveness

might come at the cost of the overall rewards for solving the task, then there is a tradeoff.

That is, an agent would have to trade off between combined reward resulting from

optimizing on task rewards and that resulting from optimizing on learning. Should an

agent focus on learning now and sacrifice task rewards? Or should it focus on getting

paid as much as possible now with the task rewards and worry about learning later? In an

ad hoc environment where an agent has little or no knowledge about each individual

potential teammate, how should such an agent leverage what it can model of the

environment to help make this decision?

We see that there are two types of openness from a multiagent viewpoint,

extending the concepts from what have been proposed by Jumadinova et al., (2014).

First, task openness refers to the rate of new, previously unseen tasks that are introduced

into the environment. Second, agent openness refers to the rate of new, previously

unknown agents that are introduced into the environment, while known agents exit the

environment. For example, an agent whose particular capability is low may choose to

join a team with a good opportunity to learn about this capability from other teammates

even when the direct rewards of completing this task is low. Thus, if the degree of agent

openness is high, such that different agents enter the environment and exit from it very

often, then the likelihood to work with the same agent/agent type to learn about a

www.manaraa.com

particular capability would be low. So, it might be prudent for the agent to lean towards

joining a team to learn from the particular agent/agent type sooner than later. Also, if the

task openness is high, such that different tasks appear and disappear from the

environment very often, then the likelihood of encountering the same task/task type again

would be low, then agents do not have to spend time, effort, and resource to learn to solve

a particular task/task type—say, a difficult one—if the task/task type would not likely

appear again in the future. In that case, an agent might not care too much about learning

to solve that task/task type, and instead aim for getting more direct rewards sooner.

Agent openness and task openness, as well as the fact that agents will learn and

evolve, make our open system a challenging system and yet very different from the

traditional dynamic systems. In traditional dynamic system, agents may be faulty and go

offline, then they may or may not come back to the system. In our open system, the agent

openness causes a set of agents changes, making old agents leave the environment and

disappear forever as well as brand new agents, which the existing agents have never seen

before, entering the system and thus forcing the existing agents to have to learn

something new about theses brand new agents. The agents who leave the system take the

expertise out of the system while the brand new agents who enter the system bring new

expertise into the system. In such a system, agents constantly have to work with new

different agents in general, which sets our open system apart from the regular dynamic

system. The injection of new agents into the environment causes changes in our agents’

reasoning in two ways: (1) when an agent reasons or learns, not only it has to think about

agent leaving, but also new agents entering; and (2) when an agent reasons, learns, or

www.manaraa.com

acts, it has to work with new agents and it is impacted directly by its experience with

these new agents and the loss of existing agents from its environment.

Furthermore, according to task openness, tasks are changing over time. Old tasks

leave the system and new tasks come into the system. Agents never know for certainty in

advance what they need to do and what expertise they need to learn to benefit them from

completing the future tasks. The task openness has an interesting correlation with

learning, since agents want to learn to get better in the future, but they do not know for

certainty what tasks are going to be available. This forces agents to model the

environment and make decisions about what to learn and from whom to learn.

1.2 Motivation

Intelligent agents and multiagent systems have been used in a wide variety of

applications to support human activities and decision making.

One particular problem that agents are well suited to assist human users with is

collaborative task assignment, where there exist a set of human users and a set of tasks

that require multiple people to combine their individual skills and expertise to work

together towards a common, temporary goal, earning each participant a share of a joint

reward if the task is accomplished successfully. In such a problem, a multiagent solution

is advantageous because agents representing individual human users can first model the

abilities of their assigned users, then find and acquire tasks that best benefit their users,

while at the same time fairly allocate tasks across all users so that the overall system also

benefits. For example, agent-based human collaborative task assignment could be used

to (1) form temporary teams of freelance workers (e.g., independent software developers

www.manaraa.com

or artists) to satisfy contracts from companies lacking the internal expertise to accomplish

tasks (e.g., developing particular pieces of software or graphic design), (2) combine the

expertise and skills of office workers across divisions within large companies to

accomplish tasks needed by the company, or (3) further improve matching students to

peer-based learning tasks in computer-aided education.

However, collaborative task assignment becomes much more challenging within

dynamic, open environments where the system itself changes due to entities coming and

going over time. In particular, we consider two types of openness affecting the

collaborative task assignment problem. First, agent openness occurs whenever the set of

human agents changes as people join and leave the environment over time. This causes

expertise and skills needed to accomplish tasks to become more or less prevalent,

affecting the ability of software agents to find suitable people to accomplish each task.

For instance, if an expert and skilled person leaves the environment, then tasks that could

be successfully accomplished in the past might not be possible anymore. Second, task

openness occurs whenever the set of collaborative tasks changes: both new tasks

requiring different expertise and skills appear and older tasks disappear over time.

People specializing in certain types of tasks might need to adapt what they work on if

those tasks disappear, while other people who had difficulty contributing might become

more useful as new tasks related to their expertise and skills appear.

Both types of openness cause uncertainty within the collaborative task assignment

problem, as software agents do not know which tasks might be successfully

accomplished now or in the future due to fluctuations in both the set of people needed to

complete tasks, as well as the set of tasks itself. Given that there might be multiple tasks

www.manaraa.com

each person could contribute to at any point in time, yet a person can only contribute to

one task at a time, openness makes the problem of selecting appropriate tasks for human

users more difficult for software agents.

1.3 Proposed Solution

Our work uses a learner-driven approach for ad-hoc collaboration in a multi-agent

task execution scenario. In our scenario, tasks can be broken down into different

subtasks, each requiring certain expertise or capability to be completed. Meanwhile, each

agent can improve its capabilities either by performing the subtask or observing other

members solving the subtask in the team. Agents are autonomous. Consequently, each

agent tries to improve its chance for getting selected in a task by improving the quality of

its capabilities that maybe needed for future task.

First, we have developed an ad hoc team formation framework that takes into

account learning and task solving under varying degrees of environmental openness. The

learning involved is based on “learning by observation” and “learning by doing”

modeling learning theory on the zone of proximal distance. An additional emphasis here

is about how an agent can choose a subtask to do such that joining a team to help

complete an overall task allows the agent to position itself to gain from learning, from

doing the subtask and from observing others working in the team. Furthermore, we have

devised mechanisms to simulate agent and task openness. Running simulations of this

framework, we were able to study various effects of considering agent openness (AO)

and task openness (TO) in ad-hoc team formation.

www.manaraa.com

Second, we have applied our ad hoc team formation framework to an agent-based

collaborative human task assignment problem. We have particularly addressed agent

openness and task openness in this problem. We have further modeled human learning

by doing and by observation, and incorporated these into the agent’s reasoning about how

to acquire tasks for its user. Our solution develops an approach for modeling and

learning unmeasurable uncertainty caused by environment openness to guide its decision

making in maximizing human user reward and learning gains over sequences of tasks.

1.4 Contributions

First, we have developed an auction-based multiagent simulation framework, which

is a mechanism to simulate openness in our environment, and have conducted

comprehensive experiments. We have developed a Java based simulation package for our

framework, which allows researchers to conduct extensive experiments to study ad hoc

team formation problem. Chapter 5 talks about this work in detail.

Second, we have established the importance of agent openness and task openness,

gained insights into the relationship between the two factors, and investigated the

effectiveness of several openness-based task selection strategies. In addition, we have

identified several key next steps to continue with this line of research. Chapter 2 details

such work. Chen et al., (2015) has published this work on the Proceedings of the 2015

International Conference on Autonomous Agents and Multiagent Systems as extended

abstract.

Third, we have studied an agent-based collaborative human task assignment

problem, which is a direct application of ad hoc team formation problem in open system.

www.manaraa.com

We have developed solutions for agents to maximize their users’ rewards and learning

gains over sequence of tasks. Chapter 4 talks about this work. Chen et al., (2016) has

published this work on the Proceedings of the 2016 International Conference on

Autonomous Agents and Multiagent Systems as extended abstract.

1.5 Overview

The rest of the chapters are organized as follows. First, Chapter 2 summarizes the

related work in ad hoc team formation research. Chapter 3 discusses the investigations we

have done in detail in ad hoc team formation in open system, including our auction based

framework, simulation of openness, our proposed algorithms, as well as the empirical

results of simulations and future work. Chapter 4 discusses how we applied the agent-

based solution to collective human task assignment problem in detail, including the

human learning model, the methodologies we used, the empirical results, and future

work. Chapter 5 gives the details of our test bed and Chapter 6 concludes our work and

identifies the future work.

	

	

www.manaraa.com

Chapter 2: Background and Related Work

In this chapter, we first discuss the background and related work for multiagent ad-

hoc team formation (Section 2.1). Then, we describe the background and related work for

multiagent task allocation problem (Section 2.2), which is mentioned in the first chapter

as a direct application of our ad hoc team formation framework.

Wooldridge & Jennings (1995) described an agent as a computer system that is

situated in some environment, and that is capable of autonomous action in this

environment in order to meet its design objectives. An agent typically senses the

environment and has some predefined actions that can be executed to affect the

environment. Shoham & Leyton-Brown (2008) defined a multiagent system as one that

consists of a number of agents, which interact with one another, typically by exchanging

messages through some computer network infrastructure. In such a system, agents need

to interact with each other, hence they need to cooperate, coordinate, and negotiate.

Team formation is the problem of selecting the best possible team to accomplish a

certain goal, given limited resources. In the traditional model, certain skills are necessary

to accomplish a task, and we must select a team that has all the necessary skills with the

maximum expected value (Marcolino, Jiang, & Tambe, 2013). In such a setting, tasks

usually need multiple agents’ actions (cooperative actions) to be completed. Hence agents

need to cooperate to form teams to perform collective actions to complete the task. Our

ad hoc team formation framework allows agents to select best tasks to their interests and

form a team to complete the tasks. We will further elaborate this later in this chapter.

www.manaraa.com

A multiagent environment can have different properties, as classified by Russell

and Norving (1995 p.46). An environment can be deterministic, in which the actions has

a guaranteed effect, or it can be non-deterministic. Also, an environment can be static or

dynamic. A static environment is the environment that can be assumed to be unchanged

except by the actions of the agent, while dynamic environment changes without agent’s

action and the changes is beyond the agent’s control. In addition, an environment can be

discrete or continuous. An environment is discrete if there are a fixed, finite number of

actions and percepts in it. We can see that an environment can be complex. Hewitt

(1986) referred to the environment that is inaccessible, non-deterministic, dynamic, and

continuous as open. Our ad hoc team formation framework simulates such an open

environment. In such environments, tasks can appear and disappear without notice, and

agents can come and go as they please.

In this thesis, we are interested in the investigation of the impact of agent and task

openness in ad hoc team formation in complex environments.

2.1 Multiagent Ad Hoc Team Formation

The team formation task is to select the best possible team to accomplish a certain

goal. Existing team formation approaches often assume that the agents capabilities are

known (e.g., Zhang & Parker (2012)). However, there are many real-world scenarios

where different agents or robots with various of capabilities do not know each other, yet

they have to coordinate and work in a team to complete a task or to meet a temporary

goal. One of the scenarios is the disaster search and rescue scenario. When the disaster

occurs, rescue teams rush into the areas that need help to provide assistance. Many search

www.manaraa.com

and rescue robots are brought to the scene. Some of them are deployed to the site to

complete some difficult or dangerous tasks. Many of these robots have not collaborated

before, hence their capabilities are unknown to each other. Some of the robots are

designed to work well with other types of robots, while some of them may not even have

the ability to coordinate with each other. As a result of this, team strategies cannot be

determined a priori. In such an ad hoc team formation problem, where team members

have not collaborated before and they assume no prior knowledge of each other, selecting

the agents/robots to form an optimal team is a challenging task.

Stone, Kaminka, & Rosenschein (2010a) raised a question to challenge the AI

community to create an autonomous agent that is able to efficiently and robustly

collaborate with previously unknown teammates on tasks to which they are all

individually capable of contributing as team members. As we expect agents to be capable

of performing complex tasks and representing real world scenarios, there will be a need

to develop agents which can function with autonomy, for longer periods of time,

interacting with older legacy agents, and agents with different communication protocols

or world models. This requires agents that are capable of adapting with respect to other

agents’ behavior.

 Stone, Gan, et al. (2010) introduced a problem which is formulated as multi-armed

bandit (MAB) problem with a teacher and learner agent. In this problem teacher and

learner agents try to optimize a team goal (collect maximum number of cans). The

teacher agent has to decide on either optimizing its own utility (collect higher number of

cans itself), or going for a sub-optimal option in order to teach the learner agent. This

MAB problem only considered the case that the remaining arm pulls are finite. Later on,

www.manaraa.com

Barrett & Stone (2011) extended the result with the consideration of an infinite number of

arm pulls with discounted rewards. One key factor in their work is that the teacher and

learner agents are always present in the environment and do not leave. If, on the other

hand, the agents can leave and new agents can enter the environment, there could be very

different implications. Based on how frequently agents leave (or new agents enter) the

environment, teaching might have to be done more frequently, less frequently, or even

none at all. For example, if an agent is only in the environment for a very short time, then

it could be better for the teacher agent to not teach, and instead improve its own utility as

it does not make sense for the teacher agent to teach, when the learner agent might leave

quickly, without staying long enough to implement and improve the team’s utility with

what it has learned. It stands to reason that teaching frequently would be more beneficial

only if the learning agent remains in the environment for a longer period of time, actually

reaping the benefits of the new knowledge it has gained. Also, since the tasks in the

environment are fixed, there is a guarantee on available tasks, and there are benefits of

learning. Our consideration is that of an open environment, where task openness is

considered, e.g., a task might have to be done frequently, or it could be a one-time task

only. If the probability of certain task appearing in the system is more frequent, teaching

other agents to solve those tasks would be beneficial. If not, then teaching would not be

necessary and the knowledge gained to solve that particular task would likely not be

used. This means, the decision to teach or not teach, would benefit from taking this factor

into account, thus calling for the analysis on task and agent openness.

Stone, Kaminka, & Rosenschein (2010) introduced a game-theoretic formulation

problem in multiagent teamwork. The authors studied a two-player game where one

www.manaraa.com

intelligent agent interacts with an old legacy agent that can respond by selecting its best

response to a fixed history of actions. An algorithm for finding optimal sequence of

actions is given for the intelligent agent to find the sequence of actions which will lead

the old legacy agent to achieve the best joint long-term payoff. This work has been

extended to using a single agent to lead multiple teammates to maximize the payoff

through a series of joint optimal actions (Agmon & Stone, 2011). This work is considered

ad hoc team formation by the authors since there are different types of agents involved

(old agents and the new intelligent agents) and there are no direct communications

between them and they never worked together before. In (Stone, Kaminka, &

Rosenschein, 2010), the intelligent agent knows the full action policy of the old legacy

agent but the old legacy agent assumes no knowledge of the intelligent agent. Though the

two agents do not have direct communication nor they have prior collaboration, this

setting is not purely ad hoc in terms of the amount of information that agents assume of

their peers. What happens if both agents have absolutely no prior knowledge of each

other? In this case, the intelligent agent must observe its peers to learn their action policy.

What if the observed agents disappear? If the observed agents no longer appear in the

environment, then all the learning effort made by the observing agent would be wasted.

This work focused on how the new intelligent agent leads the old agent through joint

actions to achieve maximum long-term goal instead of focusing on the team formation

itself. In contrast, our work assumes neither prior knowledge of agents nor the number of

agents available in the environment. We focus on the problem of how ad hoc teams

should be formed to complete tasks so that the whole system can benefit in an open

environment where both agents and tasks can come and go at any moment.

www.manaraa.com

Another type of work in ad hoc team formation has been done by Wu, Zilberstein,

& Chen (2011). With unknown teammates but the system states and joint actions being

fully observable, Wu, Zilberstein, & Chen (2011) proposed an online planning algorithm

that can be used by ad hoc agents to maximize the team’s joint reward by optimizing the

joint actions of the team. Their approach is based on constructing and solving a series of

stage games and then using biased adaptive play to choose actions. The algorithm

proposed combining the advantages of biased adaptive play and UCT (Monte-Carlo tree

search). In their work, planning is treated as an optimization problem in the joint policy

space, which is constrained by the limited capabilities of teammates. The authors focused

on the type of ad hoc teams in which a target agent knows the number of teammates as

well as a set of their feasible actions, also the system state and the joint action played at

each step are fully observable by the agent. In this setting, the target agent must reason

about the past action sequences of its teammates online, learn from these interactions, and

adapt its actions to its teammates. However, unlike our research, their work did not

consider the learning capabilities of ad hoc teammates and assumed the domain is known,

but make no assumptions of the behavior of teammates (teammates can be rational,

irrational or in between). In our work, agent does enhance its capabilities while carrying

out tasks in a team. Another key difference is along the level of openness in the

environment. In their work, the tasks are fixed. More specifically, the agents form a team

to do one task only. Their work is focused on how to coordinate well to accomplish the

task, while our work supports the possibility of agents re-forming teams to do other tasks.

Furthermore, in their work, the agents are fixed. No new agents would join the team and

no team members would leave the team.

www.manaraa.com

In Barrett, Stone, & Kraus (2011), the focus was on how ad hoc agents can

perform, especially in the pursuit domain, where the agents are predators, trying to

capture a prey. The actions that the agents perform in this environment are to capture the

prey. An ad hoc agent in this setting has to model its teammates and choose best response

to better suit the objective of the team, which is to catch the prey. There is an element of

learning in the scenario, but this is limited to just on that action of capturing the prey. But

ad hoc agents might be required to perform multitude of tasks, requiring different types

of skills, thereby making it beneficial for them to learn multiple skills. This consideration

of learning multiple skills is not made in Barrett et al., (2011) as those agents do not

perform multiple type of tasks, but only a single type of task. Also, the teams in the

scenario described in Barrett et al., (2011) are “static”, i.e. agents do not leave or enter

the environment. The question we want to answer is, what might happen if agents can

come and go as they please? For example, if a predator is replaced by a new predator, it

would require other teammates to learn about the new predator teammate. Indeed, this

dynamism in the environment motivates our research towards analyzing how the

performance of teams is affected by the introduction of open environment in terms of

tasks and teammates.

2.2 Multiagent Task Allocation

As mentioned in Chapter 1, our research in ad hoc team formation in open

environment has many applications. One of the most related applications is collaborative

human task assignment. In real world applications, there are many situations that the

environment is open with respect to both workers and tasks. For example, when forming

www.manaraa.com

temporary teams of freelance programmers to work on contracts, the availabilities of

freelance programmers in the job market change over time. During an economy boom,

the market is very attractive such that many skilled freelance programmers are drawn into

the market. However, as soon as any of them is committed to a job, he or she will be tied

up with that job and not available in the market for a certain period of time (assuming

that only one job per programmer at any given time). Meanwhile, it is also possible that

the boom evolves faster than the capabilities of programmers such that jobs might not

find sufficient programmers to fill them because of the freelance workforce simply does

not have enough capable programmers in certain skills. In an economic recession, the

market becomes not that attractive, many freelance programmers are leaving the market

while some of them who are willing to work at a relative lower pay scale stills remains in

the market. In addition, the projects/tasks also vary with the market change, hence

different skills are needed to meet the changing market needs. This scenario demonstrates

the dynamism of the real-world situation. This dynamism is represented in the

characteristics of our open system in terms of agent and task openness. We see that the

study in the impact of openness in such open environment in ad hoc team formation can

benefit the real world in many ways.

In fact, intelligent agents and multiagent systems have been used in wide variety of

application to support human activities and decision making. For instance, there are

autonomous personal assistants that support their users in carrying out tasks, managing

schedules, and so forth. For example, Chalupsky et al. (2002) and Tambe et al. (2008)

described Electric Elves that helped humans in accomplishing organizational activities,

such as rescheduling meetings, selecting presenters for research meetings, tracking

www.manaraa.com

people’s locations, and organizing lunch meetings. Myers et al. (2007) described a

system that relieved the user of routine tasks and intervened in situations where cognitive

overload leads to oversights or mistakes by the user. Berry et al. (2006) described a

personalized agent called PTIME for time management and meeting scheduling as part of

a larger assistive agent system called CALO. There are also collaboration support

systems aimed at identifying for human users other human users to help with problem

solving, teamwork, and learning. For example, Vassileva et al. (2015) described PHelpS

that helped workers find appropriate helpers among their peers when they were

encountering problems while interacting with their database, and I-Help that matched

students with their peer helpers for university courses. Khandaker et al. (2011) described

computer-supported collaborative learning applications called I-MINDS and

ClassroomWiki to form optimal student teams based on students’ tracked and modeled

behaviors. Finally, Sklar and Richards (2006) pointed out, in addition to peer learning

agents, that there were also pedagogical agents and demonstrating agents used in human

learning systems. Pedagogical agents (Chalupsky et al., 2002) are designed to facilitate

learner motivation and learning. They act as tutors and model student learner profiles

and the current state of knowledge to customize their interactions accordingly.

In recent years, intelligent agents are widely used in our lives to work together with

humans to accomplish certain tasks (Maes, 1994), some systems have humans working as

information collector and information processor along with autonomous software agents

within the systems (Kamar, Gal, & Grosz, 2013; Manson & O’Neill, 2007). Some

systems let the agents pass information-processing tasks to the human, and then collect

and aggregate the results (Ahn et al., 2008). The relationship between humans and

www.manaraa.com

machines/agents has been changed. Humans and agents now have more and more flexible

social interactions. Jennings et al., (2014) defined this emerging class of systems/teams as

human-agent collectives (HACs). In many cases, humans are playing the major role while

agents are playing the supporting role to make suggestions while in some cases agents are

playing the major role and humans are play the supporting role. For instance, the

automatic parking systems on some of the newer cars allow the computer to make

decisions on whether the parking space is big enough to park the car or not and the

computer takes over the steering wheel, leaving the driver to only control the breaks.

Another example would be Tesla’s autopilot. The system offers auto steering, and

adaptive cruise control, which allows the car to steer and keep a safe distance between the

car in front. Human in this case only takes over when some corrections are needed in the

rare case when the system cannot fully sense the environment. The HACs system/team

allows agents and humans to interact/engage in flexible relationships to achieve a

common goal. Flexible relationships mean sometimes humans are in control or take the

lead, sometimes the computers do. The relationship between humans and computers can

change in a dynamic way. Our human task assignment system is similar to HACs to some

extent, but the relationships between humans and its assigned agents are fixed. Our

system allows agents to interact with people to discover their preferences, skills, and

expertise, then find suitable tasks that maximize both the user’s utility gain and learning

opportunities in complex environments by modeling uncertainty in the outcomes of bids

caused by openness. To simplify the complicity of our system, we assume the users’

abilities are accessed by experts and represented by numeric value between 0 to 1, where

0 means no ability and 1 means expert ability. We further assume that the tasks obtained

www.manaraa.com

by agents are all completed by its human users in a fixed amount of time (1 tick), the

failure of completing the tasks will be considered in the future work.

www.manaraa.com

Chapter 3: Investigation on Agent and Task Openness

3.1 Introduction

Many aspects of ad hoc team formation have been studied, focusing on learning,

leading, and dealing with uncertainties in agent behavior (Agmon, et al., 2014; Barrett et

al., 2012; Jumadinova et al., 2014; Stone, Gan, et al., 2010; Stone, Kaminka, et al., 2010;

Wooldridge, 2009). For example, Stone, Kaminka, et al. (2010b) proposed ad hoc teams

where agents work together without pre-coordination in highly uncertain and dynamic

environments. Stone, Gan, et al. (2010) presented a probabilistic hill-climbing-based

algorithm that allows autonomous agents with heterogeneous expertise to learn how to

coordinate in coalitions that contain unknown agents to solve collaborative tasks.

But as we try to study team formation in certain agents, like human, we need to

consider several factors like how human learn from working in a team as well as

observing a teammate. Research done so far, while considering learning (Barrentt et al.

2012), has not considered the learning that is present when agents—such as humans—

work together in a team. For example, when human agents work together, it is inevitable

that they learn from each other, and occasionally they teach each other. Indeed, human

agents do learn and evolve when they interact and work in a team through time. Through

learning, agents can improve their capabilities so that they can do things better next time

and improve the efficiency of the entire system. In ad hoc team formation, while prior

knowledge of a potential teammate is not available, it is still possible for an agent to

model the types of agents and tasks likely to be in the environment, and to assume that

learning is inevitable when working together. Such consideration and assumption will

www.manaraa.com

influence how agents form ad hoc teams—in how each decides to join an ad hoc team to

help solve a task. Thus, it is necessary to consider learning when agents work together

and its impact in subsequent tasks.

Furthermore, a key question to ad hoc team formation is how agents should decide

on which teams to join when taking into account the potential rewards or utility of

learning while on a team. In a way, if learning consumes resources or its effectiveness

might come at the cost of the overall rewards for solving the task, then there is a tradeoff.

That is, an agent would have to tradeoff between combined reward resulting from

optimizing on task rewards and that resulting from optimizing on learning. Should an

agent focus on learning now and sacrifice on task rewards? Or should it focus on getting

paid as much as possible now with the task rewards and worry about learning later? In an

ad hoc environment where an agent has little or no knowledge about each individual

potential teammate, how should such an agent leverage what it can model of the

environment to help make this decision?

We see that there are two types of openness from a multiagent viewpoint,

extending the concepts from what have been proposed by Jumadinova et al. (2014). First,

task openness refers to the rate of new, previously unseen tasks that are introduced into

the environment. Second, agent openness refers to the rate of new, previously unknown

agents that are introduced into the environment, while known agents exit the

environment. For example, an agent whose particular capability is low may choose to

join a team with a good opportunity to learn about this capability from other teammates

even when the direct rewards of completing this task is low. Thus, if the degree of agent

openness is high, such that different agents enter the environment and exit from it very

www.manaraa.com

often, then the likelihood to work with the same agent/agent type to learn about a

particular capability would be low. So, it might be prudent for the agent to lean towards

joining a team to learn from the particular agent/agent type sooner than later. Also, if the

task openness is high, such that different tasks appear and disappear from the

environment very often, then the likelihood of encountering the same task/task type again

would be low, then agents do not have to spend time, effort, and resource to learn to solve

a particular task/task type—say, a difficult one—if the task/task type would not likely

appear again in the future. In that case, an agent might not care too much about learning

to solve that task/task type, and instead aim for getting more direct rewards sooner.

Our work in this investigation uses a learner-driven approach for ad-hoc

collaboration in a multi-agent task execution scenario. In our scenario, tasks can be

broken down into different subtasks, each requiring certain expertise or capability to be

completed. Meanwhile, each agent can improve its capabilities either by performing the

subtask or observing other members solving the subtask in the team. Agents are

autonomous. Consequently, each agent tries to improve its chance for getting selected in

a task by improving the quality of its capabilities that maybe needed for future task. In

this thesis, we propose four task-selection strategies considering potential learning gain

differently, and three more task-selection strategies that also consider agent and task

openness. We also consider different agent types and different degrees of openness of

environment. Agent types are a pre-defined set of agents including novice agents, average

agents, and expert agents. An expert agent is one that has more expert capabilities than an

average agent, and so does an average agent over a novice agent. Here we report on our

experiments showing the impact of agent and task openness on the environment, agent’s

www.manaraa.com

learning and task performance, investigating the roles of the different task selection

strategies, and demonstrating the importance and need to consider openness in multiagent

ad hoc team formation problems.

3.2 Related Work

In Stone, Gan, et al. (2010), teacher and learner agents try to optimize a team goal

(collect maximum amount of cans) where the problem is formulated as an instance of k-

armed bandits problem. The teacher agent has to decide on either optimizing its own

utility (collect higher number of cans itself), or going for a sub-optimal option in order to

teach the learner agent. One key factor is that the teacher and learner agents are always

present in the environment and do not leave. If, on the other hand, the agents can leave

and new agents can enter the environment, there could be very different implications.

Based on how frequently agents leave (or new agents enter) the environment, teaching

might have to be done more frequently, less frequently, or even none at all. For example,

if an agent is only in the environment for a very short time, then it could be better for the

teacher agent to not teach, and instead improve its own utility as it does not make sense

for the teacher agent to teach, when the learner agent might leave quickly, without

staying long enough to implement and improve the team’s utility with what it has

learned. It stands to reason that teaching frequently would be more beneficial only if the

learning agent remains in the environment for a longer period of time, actually reaping

the benefits of the new knowledge it has gained.

Also, since the tasks in the environment are fixed, there is a guarantee on available

tasks, and there are benefits of learning. Our consideration is that of an open

www.manaraa.com

environment, where task openness is considered, e.g., a task might have to be done

frequently, or it could be a one-time task only. If the probability of certain task appearing

in the system is more frequent, teaching other agents to solve those tasks would be

beneficial. If not, then teaching would not be necessary and the knowledge gained to

solve that particular task would likely not be used. This means, the decision to teach or

not teach, would benefit from taking this factor into account, thus calling for the analysis

on task and agent openness.

In Barrett et al. (2011), the research is on how ad hoc agents can perform,

especially in the pursuit domain, where the agents are predators, trying to capture a prey.

The actions that the agents perform in this environment are to capture the prey. There is

an element of learning in the scenario, but this is limited to just on that action of

capturing the prey. But ad hoc agents might be required to perform multitude of tasks,

requiring different types of skills, thereby making it beneficial for them to learn multiple

skills. This consideration of learning multiple skills is not made in Barrett et al. (2011) as

those agents do not perform multiple type of tasks, but only a single type of task.

Also, the teams in the scenario described in Barrett et al. (2011) are “static”, i.e.

agents do not leave or enter the environment. The question we want to answer is, what

might happen if agents can come and go as they please? For example, if a predator is

replaced by a new predator, it would require other teammates to learn about the new

predator teammate. Indeed, this dynamism in the environment motivates our research

towards analyzing how the performance of teams is affected by the introduction of open

environment in terms of tasks and teammates.

www.manaraa.com

3.3 Simulation Framework

3.3.1 Multiagent System Design

We model our ad hoc environment using three main components. A set of existing

tasks (tasks inside of the environment),	𝒯, a set of existing agents (agents inside of the

environment), 𝛢, and a blackboard-based publish-subscribe system. In our environment,

existing agents can communicate and collaborate through the blackboard without

knowing each other beforehand. For example, to form a team to solve a task 𝑇 ∈ 𝒯,

agents need to bid for 𝑇 in an auction held by the administrator of the environment on the

blackboard, without direct communications with other agents. Therefore, agents bidding

for 𝑇 have no idea of with whom they will work until after the auction results are

disclosed. Agents who win the auction may, consequently, work with other agents they

have never met before. Agents can also access current tasks information through the

blackboard to assist their decision-making. The environment is managed by an

administrator (admin). New agents are introduced into the environment and some existing

agents are removed from the environment, based on the Agent Openness (AO) parameter,

by the admin. The admin obtains new agents from an agent’s pool outside of the

environment. Removed agents from the environment will not be sent back to the agents’

pool. New tasks are also introduced into the environment, based on the Task Openness

(TO) parameter, by the admin obtaining or sampling new tasks from a tasks pool.

www.manaraa.com

3.3.2 Openness

Task Openness (TO). Task openness affects the relative values of immediate versus

delayed task rewards and outcomes. Many aspects of real world collaborative group

processes involve a time delay between when a decision is made and when the benefits

for that decision are realized. Decisions may require balancing of short-term gain or

success versus future potential gains or successes. In the environment, agents making

decisions in team formation have to tradeoff between current and future task rewards, as

less-than-optimal rewards for a current task may produce higher rewards for other tasks

in the future. For example, in a resource-constrained environment, an agent might

withhold its resources from optimally solving a current task T1, with the expectation that

it would use the resources to solve a future task T2 that has a higher reward. However, if

the environment has high task openness, trading off current rewards for future ones might

not be a good idea, as T2 might never appear in the environment again. These inter-

temporal choices are inherent in virtually all decision-making contexts, and inclusion of

the openness of the tasks in the environment is therefore critical for effective modeling of

team functioning. In the real world, task repetition and scheduling, as well as the

occurrence and evolution of new tasks and requirements, are some of the various reasons

that could affect TO.

Agent Openness (AO). Agent openness affects decisions of team members to

collaborate or to share their knowledge or expertise or learn from others. Teams may

involve members with different types and skillsets, often diverse in their makeup in real-

world situations. As such, agents may have heterogeneous sensing, reasoning, and acting

www.manaraa.com

capabilities that may or may not be known to the other agents in the first place. In such

situations, multiagent learning approaches have been proposed for agents to learn from

each other and even to share knowledge (e.g., teach) with each other (Barrett et al.,

2011). However, deciding to learn or teach is not trivial. Let us consider two cases. Case

1: Suppose A1 has to decide whether to join one of two teams, C1 or C2. Joining C1

would give a higher reward; however, joining C2 would give A1 an opportunity to work

with and learn from a high-capability agent A2. Case 2: Suppose that A1 has to decide

whether to share knowledge with another agent A3, with the idea that if A1 shares

knowledge with agent A3 now, the benefits from working with an improved A3 in future

teams would outgain the expense. Such considerations are certainly valid and could lead

to optimization of rewards. However, what if A2 is not capable of sharing in Case 1, and

A3 exits from the environment in Case 2? Then A1’s decision to join C2 (Case 1) would

be unwise and its efforts to teach (Case 2) would be all for naught. Thus, modeling such

AO of the environment can help knowledge sharing and can help optimize the learning.

In real-world situations, equipment faults, sensor downtimes, instrument malfunctions,

personnel changes, and role re-assignments are some of the factors impacting AO.

Simulating Openness. In our experiments, we simulate both AO and TO by

introducing new agents and tasks in our simulation. We randomly remove agents from

the simulation and introduce agents that were not previously present in the simulation in

order to implement AO. The rate at which we remove the agents in the simulation and

introduce newer agents depends on AO, 𝐴𝑂 ∈ 	 [0,1], where 0 means no new agent is

introduced and 1 means the all the 𝑁?	agents that exist at the time t = 0 will be replaced

by the end of the simulation with different agents. In general, the number of agents

www.manaraa.com

removed at each clock tick is (𝑁?/𝑇′) ∗ AO where 𝑇′ is total simulation ticks. (Note that

(𝑁?/𝑇′) ∗ 𝐴𝑂 is not always an integer, in which case we accumulate the floored decimal

values, when it reaches 1, then we remove one more agent from the environment at that

tick.) TO is also simulated by introducing tasks which have different sub-tasks and

difficulty as the simulation moves forward, 𝑇𝑂 ∈ 	 [0,1]. One new task is added to the

system at each tick in the simulation and TO = 0 means that each new task has already

appeared before in the environment and TO = 1 means each new task is a different task

from the ones already in the environment (i.e., tasks which have different combinations

of subtasks and difficulty).

Agents Perceiving Openness. For the purposes of our experiments, to investigate

the impact of considering openness when an agent makes decisions, we use the ideal

assumptions that agents know exactly the actual values of AO and TO. Note that this is

not necessarily true in real world ad hoc situations, and we will address this as future

work. In our design, the admin publishes the AO and TO on blackboard so that every

agent receives the “ground truth”. We term this approach “informed perception”.

3.3.3 Tasks and Capabilities

We define 𝒯 be a set of all tasks in the environment, each task 𝑇 ∈ 𝒯 is determined

by the subtasks comprising the task. Let 𝜏 denote the set of all subtasks in our

environment, so we have 𝑇 = {𝜏H, 𝜏I,⋯ , 𝜏 K } , where 𝜏 ∈ 𝜏 . Similarly,

𝒞 = 𝑐H, 𝑐I, … , 𝑐 P denote the set of all capabilities that agents could have. Each

subtask	𝜏 ∈ 𝜏 requires exactly one capability 𝑐 from the set 𝒞 to solve. For example, in

order to solve subtask 𝜏Q, the capability 𝑐Q is needed. Also, in our design, each subtask 𝜏Q

www.manaraa.com

is associated with two more parameters, the minimum number of agents 𝑛Q that are

required to perform the subtask 𝜏Q, the minimum quality threshold 𝑞𝑡Q ∈ 	 (0,1] that

agents are required to have in order to perform the subtask. A subtask 𝜏Q can appear in

many different tasks, with possibly different 𝑛Q and 𝑞𝑡Q. Furthermore a set of agent is

denoted as 𝐴, and each agent 𝑎V ∈ 𝐴 is described by 𝒄𝒂𝒑𝒊 = 𝑐𝑎𝑝V,H, 𝑐𝑎𝑝V,I,⋯ , 𝑐𝑎𝑝V,|𝒞| ∈

[0,1]|𝒞| where 𝑐𝑎𝑝V,Q denotes 𝑎V’s expertise with respect to the 𝑘-th capability 𝑐Q.

3.3.4 Learning

Learning happens in several ways. In our simulation, we focus on two types. We

assume that it is inevitable that an agent (e.g., a human) would learn some of the

experiences and expertise of certain skills either from practicing (learn by doing) or from

watching its collaborators performing the tasks (learn by observation). This learning

process is likely to lead to changes in an agent’s capabilities and subsequent decision

making. To this end, we adopt the following learning framework based on principles

from human learning theory (Khandaker & Soh, 2007). When a person practices some

skills, when he/she does not have much expertise in the beginning, the room for

improvement is relatively large and the learning gain is apparent. As they gain more

experience and become better and better, the improvement becomes harder and the

learning gain also diminishes. Following this theory, we designed our learning by doing,

using Equation. 3.1, with agent 𝑎V	on capability	𝑘.

𝐺𝑎𝑖𝑛_`ab 𝑎V, 𝑘 = c
d?ef,ghi

		 (3.1)	

www.manaraa.com

where 𝜂 is a constant denoting the increment in knowledge from self-learning and 𝜀 is a

small number in case 𝑐𝑎𝑝V,Q= 0. This gives the amount of capability increase of agent

𝑎V	on capability	𝑘.

Moreover, in human learning scenarios, when a person learns from another, the

amount of information transferred between two agents is proportional to the knowledge

gradient between them (Jumadinova et al., 2014). Following this approach, we model the

learning gain by a learner agent, 𝑎a, from interacting with a practicing agent, 𝑎l, on

capability k to be proportional to the capability difference between them, 𝑐𝑎𝑝l,Q − 𝑐𝑎𝑝a,Q.

Note that as we do not consider explicit teaching in the current simulation, we do not

identify practicing agents as “teacher” agents.

Designing an appropriate function to quantify the learning gain while modeling

human learning requires some insight. Vygotsky’s zone of proximal development (ZPD)

theory (Vygotsky, 1978) suggests that it may be difficult for two persons to teach/learn

from each other if the amount of prior knowledge they have on a topic is vastly different

from each other or almost identical to each other. At the same time, as the learner’s

knowledge increases, the amount of learning gain that it can obtain also diminishes, as its

knowledge starts to converge with that of the teacher. Based on this theory, we design the

learning gain function of agent 𝑎a observing agent 𝑎l successfully completing a subtask 𝑘

as in Equation 3.2 below.

www.manaraa.com

𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘

=

		
0																																																																			𝑖𝑓	𝑥 < 0			

−
𝛽
𝛼I 𝑥

I + 2
𝛽
𝛼 𝑥																																			𝑖𝑓	0 ≤ 𝑥 < 𝛼	

−
𝛽

𝛼 − 1 I 𝑥
I +

2𝛼𝛽
𝛼 − 1 I 𝑥 +

𝛽 1 − 2𝛼
𝛼 − 1 I 			𝑖𝑓	𝛼 ≤ 𝑥 < 1

																			

(3.2)

where 𝑥 is the capability difference between agent 𝑎l and agent 𝑎a, 𝑥 = 𝑐𝑎𝑝l,Q −

𝑐𝑎𝑝a,Q		and 𝛽 is the maximum learning gain that 𝑎a can acquire from observing agent 𝑎l,

and 𝛼 is the capability difference that gives the maximum learning gain (when 𝑥 = 𝛼, the

learning gain is 𝛽, which is the maximum learning gain). With the function described in

Equtation. 3.2, we can see that when the capability difference 𝑥 is small (between 0 and

𝛼) the learning gain drops rapidly as 𝑥 gets smaller from 𝛼 to 0 and the learning gain

reaches 0 when the two agents have equal knowledge.

Finally, we define the total learning gain of an agent	𝑎V, when working in a team, as

in Equation 3.3.

𝐺𝑎𝑖𝑛 𝑎V = 	 𝐺𝑎𝑖𝑛y`ab 𝑎V, 𝜏z{|∈K + 𝐺𝑎𝑖𝑛no_`pq` 𝑎V, 𝑎}z?~, 𝜏�{�∈K∖ {| 								 (3.3)	

where we assume 𝑎}z?~ ∈ 𝐴K ∖ 𝑎V , where 𝐴K denotes all the agents that are assigned to

solving task 𝑇, 𝑗z?~ = arg	max
}
𝐺𝑎𝑖𝑛 𝑎V, 𝑎}, 𝑘 	 for a particular capability 𝑘.		This means

that if 𝑎V observes more than one agent completing a subtask 𝜏�,	we will use the agent

𝑎}z?~ to determine most learning by observation gain for 𝑎V.

www.manaraa.com

Note that a key difference between the above learning by observation approach and

learning by being taught as modeled in Stone, Gan, et al. (2010) is that when an agent

considers potential learning gain here, the agent implicitly tries to put itself in a situation

where it would be more likely to learn from observing others to improve its capabilities

and agents in our design presently do not have to worry about whether to teach, whereas

an agent in Stone, Gan, et al. (2010) has to reason explicitly about teaching. Moreover,

our agent design only considers how to improve an agent’s own capabilities and not

others as in Stone, Gan, et al. (2010). Nevertheless, teaching in Stone, Gan, et al. (2010)

does not require specific contract or agreement from the agents to be taught, and thus

parallels our learning by observation at least in spirit. And in our future work we will

integrate agent teaching of Stone, Gan, et al. (2010) to more completely capture learning

occurring in ad hoc teams.

3.3.5 Task Selection Strategies

In our simulation design, tasks are allocated through auctions held on blackboard.

Agents can see the available tasks as well as tasks’ specification. Then, based only on this

information and agents’ perception of AO and TO, agents make decisions on which task

to bid on. When an agent chooses a task to bid, it needs to consider several things: (1) the

direct task rewards for helping completing the task, (2) the learning rewards/gains it can

get both from practicing its skills when executing the subtask (learning by doing) and

from observing its team members completing other subtasks (learning by observation),

and (3) the uncertainties in the environment, as captured in the environmental openness

(AO and TO)—more specifically, the expected availability of agents from whom the

www.manaraa.com

capabilities can be learned via working in a team and the type of tasks that would likely

appear in the future. To this end, we propose the following task selection strategies.

These strategies are based on the assumption that the system administrator—i.e.,

auctioneer—assigns each subtask 𝜏 ∈ 𝑇 to the agents who bid on the task 𝑇 with the best

matching capability.

In the following, the first three task selection strategies are based on the evaluation

of the subtasks’ quality requirements and the agents’ quality of corresponding capabilities

only; there is consideration for neither AO nor TO. The next four strategies do consider

environmental openness. In the following, let 𝑇o`_l denote the task that an agent chooses

to bid on that is to its best interest. Each agent 𝑎V has a vector,

𝒄𝒂𝒑𝒊 = 𝑐𝑎𝑝V,H, 𝑐𝑎𝑝V,I,⋯ , 𝑐𝑎𝑝V,|𝒞| , and 𝑐𝑎𝑝V,Q, denotes the 𝑘th capability of agent 𝑎V in

𝒄𝒂𝒑𝒊.

Strategy 1. Most Qualified (MQ)

𝑇���� = arg	max
	K

𝑐𝑎𝑝V,Q − 𝑞𝑡QQ (3.4)

Notice here, we sum over 𝑘, where 𝑘 ∈ 𝑘|𝑐𝑎𝑝V,Q > 𝑞𝑡Q	𝑎𝑛𝑑	𝜏Q ∈ 𝑇 . With this

MQ strategy, we find the total of positive differences of agent 𝑎V’s corresponding

capabilities of subtasks and the quality requirement of subtasks in each task T. Since an

agent 𝑎V is capable of doing a subtask 𝜏Q,	then this agent must have its 𝑐𝑎𝑝V,Q − 𝑞𝑡Q > 0,

and the bigger the difference is, the more qualified it is for this subtask.

www.manaraa.com

Strategy 2. Most Learning Opportunity (MLO)

𝑇o`_l = arg	max
	K

𝑈�o`pq`(𝑇) 	 	 	 	(3.5)	

𝑈�o`pq` 𝑇 =
d?ef,g���lg�g�

��
	 	 	 (3.6)

	

where 𝑘� ∈ {𝑘�|𝑐𝑎𝑝V,Q� < 𝑞𝑡Q�	, 𝜏Q� ∈ 𝑇}, 𝑈�o`pq` 𝑇 	 is the potential utility that the

bidding agent can gain from observing other teammates executing the subtasks, and	𝑛� is

the number of subtasks observed. Note that not all 𝑇 ∈ 𝑇?q?Va?oa` are candidates for an

agent to apply this strategy. If agent 𝑎V does not have a subtask 𝜏Q s.t. 𝑐𝑎𝑝V,Q − 𝑞𝑡Q ≥ 0,

then 𝑎V will not consider bidding for this task.

Strategy 3. Most Qualified + Learning (MQ+LO)

This strategy is a hybrid of the first two strategies. Agents not only consider the

opportunity to learn from other agents by observation but also consider their qualification

for solving one subtask within a task.

𝑇o`_l = argmax
	K

𝑈a`?p� 𝑇 																														(3.7)	

where 𝑈a`?p� 𝑇 = (𝑈��V�� 𝑇 + 𝑈�o_`pq`)/2, 𝑈��V�� 𝑇 = 𝑐𝑎𝑝V,}|�� − 𝑞𝑡}|�� ,

𝑗��� = argmax
	}

𝑐𝑎𝑝V,} − 𝑞𝑡} , 𝜏} ∈ 𝑇 and 𝑐𝑎𝑝V,} − 𝑞𝑡} ≥ 0. Note that 𝑈��V�� 𝑇 is the

expected utility of the bidding agent for executing its best qualified subtask of 𝑇. It

computes the largest positive difference of agent 𝑎V’s 𝑐𝑎𝑝V,} and the required quality

threshold 𝑞𝑡}. This term considers this agent’s qualification of its best quality that

matches the task’s required capabilities. 𝑈�o`pq` 𝑇 is same as defined in Eq. 3.6.

Similar to MLO, if there is no 𝑗��� for task 𝑇,	then the agent does not bid for it.

www.manaraa.com

Before introducing the next set of task selection strategies, here we define a key

term called the total potential utility of participating in the solution of a task 𝑇 in

Equation 3.8.

𝑈 𝑇 = 𝑤� ⋅ 𝑈a`?p� 𝑇 + 𝑤y ⋅ 𝑈_�aq` 𝑇 		 	(3.8)	

where 𝑤� and 𝑤y are the weights for learning and solving a task, respectively, and 𝑤� +

𝑤y = 1. 𝑈a`?p� 𝑇 is the potential utility from learning by doing and learning by

observation as defined in Eq. 3.7 above. 𝑈_�aq` 𝑇 is the potential utility of the bidding

agent participating in solving the task 𝒯, as in Eq. 3.9:

𝑈_�aq` 𝑇 = 𝜌 �l¡|��
�lg∗�gg

	 ⋅ 𝑅K 	 	 	(3.9)	

where 𝑗z?~ = argmax
	}

𝑐𝑎𝑝V,} − 𝑞𝑡} , 𝜏} ∈ 𝑇 and 𝑐𝑎𝑝V,} ≥ 𝑞𝑡},	and 𝜌 is an adjustment

factor to put the 𝑈_�aq` 𝑇 in roughly the same range as 𝑈a`?p� 𝑇 in our simulations.

Notice in the denominator, we sum the required quality threshold of each subtask, 𝜏Q ∈

𝑇, multiplied by each agent number requirement 𝑛Q, to model the difficulty level of a

task. 𝑅K	is a parameter that represents the reward for completing the task 𝑇. In the case

that there is no 𝑗z?~ then 𝑈_�aq` 𝑇 = 	0, and the agent does not bid for this task since it

is not qualified for it.

The following task selection strategies are all based on the total potential utility.

Notice in Equation. 3.8, there are two parameters 𝑤� and 𝑤y, which are the weights for

learning and solving a task, respectively. An agent’s perception of the environmental

openness, AO and TO, could and should affect its decisions on task selection through

shifting the weights 𝑤� and 𝑤y. For example, in the case that an agent perceives that AO

www.manaraa.com

is high—which means agents come and leave very frequently, the likelihood for the agent

to, say, work with the same agent again to learn a particular capability is low. So, in such

a scenario, an agent might want to learn things as much or as soon as possible so that they

can acquire the capability to solve the task that are highly likely to appear again in the

future to gain more utilities. Therefore, it is prudent to increase the weight of 𝑤� to

emphasize more on learning. On the other hand, if the agent perceives that TO is high,

then the tasks change very frequently. In such environment, agents do not have to learn

to solve a particular task—say, a difficult one—if the task would not likely appear again

in the future, then the likelihood of encountering new tasks which require different

capabilities could be very high. In that case, the agents might not care too much about

learning to solving particular tasks, and aim for getting more rewards sooner. Therefore,

shifting more weight to 𝑤� to focus on getting immediate rewards makes more sense.

Strategy 4. Most Total Potential Utility (MTPU)

𝑇o`_l = argmax
	K

𝑈 𝑇 		 	 	 (3.10)	

where 𝑈 𝑇 is the total potential utility as defined in Eq. 3.8. Within this MTPU strategy,

we have several interesting variants by setting the weights differently: Strategy 4.1.

MTPU_L=S with 𝑤� = 𝑤y = 0.5; Strategy 4.2. MTPU_L<S with 𝑤� = 0.25, 𝑤y =

0.75, and Strategy 4.3. MTPU_L>S with 𝑤� = 0.75, 𝑤y = 0.25;

Strategy 5. MTPU with Agent Openness (MTPU+AO)

This strategy is also based on Equtation. 3.9, but taking 𝐴𝑂 into account. As we

mentioned above, when agents come and go frequently (AO is high), putting more

www.manaraa.com

attention on learning certain capabilities from certain agent before it leaves the

environment might be a wise decision. Hence, for the MTPU+AO strategy, we set 𝑤� =

𝐴𝑂	and 	𝑤y = 1 − 𝐴𝑂.

Strategy 6. MTPU with Task Openness (MTPU+TO)

Similarly, using the same Equation. 3.10, but taking TO into account. When TO is

high, focusing on immediate rewards is a good choice. Hence for this strategy, we set

𝑤� = 1 − 𝑇𝑂	and 𝑤y = 𝑇𝑂.

Strategy 7. MTPU with Both Openness (MTPU+ATO)

Similarly, using the same Equation. 3.10 for the MTPU+ATO strategy, we use

𝑤� = 	
¤n

¤nhKn
 and 𝑤y =

Kn
¤nhKn

. We define 𝑤� and 𝑤y in Strategy 7 as such so that when

AO and TO are either high or both low, the weight for learning (𝑤�) and the weight for

getting the immediate rewards (𝑤y) are not too different from each other.

On the other hand, when AO is high and TO is low, we will get	𝑤� > 𝑤_. In this

case, agent-leaving rate is high. The chance for encountering a particular agent to learn a

particular capability is slim. Hence seizing the opportunity to learn some particular

capability before its gone might be critical. Meanwhile, the tasks (task types) more or less

will be the same over time, due to the low TO. Hence, learning a particular skill or

capability, say a useful one that is currently in demand, is promising to bring more future

benefits. These two considerations both suggest that focusing more on learning might be

a better choice.

www.manaraa.com

Conversely, when TO is high and AO is low, it will result in 𝑤_ > 𝑤�. In this case,

tasks are changing rapidly and different tasks usually require different skills to perform.

So, it might not make much sense for an agent to learn some particular capabilities, since

those capabilities might not be needed again. It might be then wiser to focus on getting

more things done and getting more rewards now. In addition, agents are more stable in

this case due to low AO; there is more chance to learn some particular skills from some

agents, since the agents who have special capabilities tend to stay around longer in the

environment. Hence there is no need to worry about the “expertise” to solve a particular

subtask of a task to disappear from the environment. These two reasons suggest that

agent solving the task and getting immediate rewards might deserve more attention.

3.4 Results

3.4.1 Configuration Parameters

Before we can analyze the roles of task openness and agent openness in the ad hoc

teams, we need to come up with two important configuration parameters for our

simulations: (1) the distribution of different agent types—expert, average, and novice—in

the system and (2) a configuration of required time for agents to finish a task (𝑡K) and the

required number of agents to finish a task (𝑛K) to facilitate the feasibility of completing

high number of tasks and achieving sufficiently high total learning gain. Since these

parameters are set to afford us meaningful, comparable results for a wide range of

openness levels, we dub this configuration Facilitator Configuration (FC). For this effort,

we used task selection strategy 3 (MQ+LO) and defined an expert agent as one with at

www.manaraa.com

least one of its initial capabilities in the range of [0.7 to 1.0], an average agent of range

[0.3 to 0.7], and a novice agent in the range of [0.0 to 0.3].

After running experiments with different mix of expert, novice and average agents,

we realized that a uniform distribution of the agent types—33.33% for each type— would

result in better task completion and total learning than with configuration having higher

number of expert or average agents. The uniform agent configuration would mean that

there are balanced numbers of expert agents to help complete tasks and of average and

novice agents involved in completing tasks and learning.

Next, we used the above uniform agent configuration to run simulations with

different values of 𝑡K and	𝑛K. The simulation results are provided in Tables 3.1 and 3.2.

From Table 3.1, we see that the scenario with 𝑡K= 25 and 𝑛K	= 1X produced highest

learning efficiency for all agent types. From Table 3.2, the same configuration also

performed well in terms of tasks completion with 74.53% task completion rate, with

highest task completion rate for novice agents and very high task completion rate for

average agents. Lower 𝑛K allowed agents to form teams which were capable of solving

most tasks. 25 ticks to finish a task might look counter intuitive as shorter tasks are easier

to be completed. But, if the tasks are really short then only expert agents would be

involved in solving them, thereby decreasing the learning gain, as novice and average

agents would not have opportunities to win any task whatsoever owing to the availability

of expert agents all the time. Consequently, the configuration with 𝑡K	= 25 and 𝑛K	= 1X

was chosen for our experiments. Finally, in addition to using the Facilitator

Configuration, we also used the following parameters in our experiments: AO = (0, 0.25,

0.5, 0.75, 1.0), TO = (0, 0.25, 0.5, 0.75, 1.0), number of agents per simulation run is 900,

www.manaraa.com

one task is introduced per time tick, and the number of non-zero initial capabilities for

each agent = (1, 3, 5). This last parameter models an agent’s ability to solve tasks when it

is first created.

www.manaraa.com

Table 3.1 Simulation results in terms of total learning gain achieved to determine
Facilitator Configuration. 1X means the number of agents required to complete each

subtask of a task is 1, 2, or 3; 2X means it is 2, 4, or 6; and so forth

𝒏𝑻	
𝒕𝑻	Number of Ticks (in 10 -2)	

	
1 10 15 20 25

1X
N 0.000 3.698 4.331 4.900 6.152
A 2.337 3.151 3.612 3.973 4.039
E 1.038 2.377 2.694 2.878 2.909

2X
N 2.294 2.954 3.553 3.419 3.012
A 1.641 2.469 2.470 2.513 2.470
E 1.250 1.887 1.869 1.894 1.933

3X
N 2.177 2.315 1.230 2.971 2.627
A 1.677 2.004 1.803 1.926 2.027
E 1.275 1.368 1.463 1.456 1.424

4X
N 1.901 2.079 1.675 1.898 1.427
A 1.534 1.429 1.434 1.570 1.802
E 1.206 1.074 1.198 1.209 1.161

	

	

Table 3.2 Simulation results in terms of number of tasks solved to determine Facilitator
Configuration. 1X means the number of agents required to complete each subtask of a

task is 1, 2, or 3; 2X means it is 2, 4, or 6; and so forth

𝒏𝑻	
𝒕𝑻	Number of Ticks (in 10 -2)

	 1	 10	 15	 20	 25	

1X
N 0.00 3.30 8.33 10.43 7.57
A 0.97 68.73 98.97 114.2 110.17
E 1027.6 952.1 873.97 758.7 656.67

2X
N 2.80 13.80 8.27 6.70 2.97
A 51.13 156.1 127.50 100.5 100.20
E 1893.8 1023 783.50 600.5 540.43

3X
N 6.77 3.80 2.00 3.17 3.37
A 173.33 110.0 85.57 80.60 71.70
E 1715.2 693.7 501.93 426.8 361.03

4X
N 6.67 1.63 1.47 2.03 1.6
A 150.9 52.2 51.23 43.93 46.13
E 821.5 361 325.6 264.8 228.53

	
	 	

www.manaraa.com

3.4.2 Experiments and Results

Here we report on three experiments. The first experiment was designed to

investigate the roles of agent openness (AO) and task openness (TO) in task completion

and learning. More specifically, we wanted to study how agents can change their team

forming decisions when we increase AO only, TO only and both AO and TO. Also, we

wanted to investigate the compounding effects of combining different levels of AO and

TO with respect to task completion and learning gain. For this experiment, we used the

number of non-zero initial capability = 5 as it made agents more capable of solving the

tasks but not too easily, as well as enabled average and novice agents to contribute in task

solving. The second experiment was aimed to gain insights into how the different task

selection strategies, as described in Section 3.3.5, would perform under different

combinations of AO and TO by studying their performances in task completion and

learning gain. The third experiment was designed to investigate how changing the

number of non-zero initial capabilities would change the overall performance of the

agents and the roles of AO and TO.

For the above three experiments, we used the Facilitator Configuration described in

Section 3.4.1, we set the total number of ticks per simulation to 500 to enable agents to

make use of their learned capabilities in task solving. Also, we set 𝒞 = 20, 𝑇 = 5 for

all ∈ 𝒯,	𝜌 = 5, 𝜂 = 0.01, 𝜀 = 0.001,	𝛽 = 0.05, 𝑎 = 0.25 and 𝑅K = 1 for our equations

outlined in Section 3.3.4. There were 25 AO and TO combinations (Section 3.3), 9 task

selection strategies in total, 3 values for non-zero initial capabilities options (1, 3, and 5)

and we ran 30 times for each AO-TO-task selection strategy combination. This yielded a

total of 20,250 simulations (25×9×3×30).

www.manaraa.com

 Investigating Roles of AO and TO in Task Completion and Learning

Figure 3.1 illustrates the roles of openness in ad hoc team setting. First, as the tasks

in the environment became more open—i.e. new tasks requiring different skills emerging

in the environment, both task completion rate and learning gain decreased. There was a

pronounced decrease in the total number of task completed (T) and learning gain (L)

along the y-axis. This reinforces the hypothesis that in an ad hoc scenario, it is crucial to

consider TO. We also see that the task completion rate decreased by 63%, 77%, 80%, and

85% when TO increased from 0.0 to 1.0 with a step of 0.25, for AO = 0.

Correspondingly, learning gain also decreased by 70%, 82%, 85%, and 89% at the same

time. This decrease could be attributed to the fact that when TO increased, the agents

needed to solve newer problems, requiring skills which might not yet be available among

them. This led to tasks not being auctioned off, decreasing the tasks completion as well as

opportunities for learning. We see an analogy of the observation in a disaster response

scenario, for example. Suppose there are doctors, engineers, and firemen in the volunteer

team, but the situation demands them to navigate through a minefield, this can severely

limit the tasks that the team can complete. This can lead the team to abandon certain

region beyond the minefield, thereby decreasing the tasks completion rate and learning

gain as they do not have the necessary skills to complete those very specific jobs.

Also from Figure 3.1, we can observe that Task Completion (T) and Learning Gain

(L) numbers generally increased when AO increased, but only when TO > 0. Learning

gain actually decreased and task completion remained constant when AO increased if TO

= 0. Both of these trends go on to show that the environment in which ad hoc teams

operate could have a more complex impact on an agent’s reasoning or decision making

www.manaraa.com

than how they are currently being considered. When TO > 0, new tasks are introduced to

the environment, which, on average will require some new skills to be completed. This is

where increasing AO is beneficial, as newer agents, on average, will bring some new

skills to the environment, which might be relevant in solving the newer tasks. This is still

so even though, on average, the expertise/skills lost from expert agents leaving and

replaced with new average or novice agents tended to average out the expertise gained

from new expert agents entering the environment and average or novice agents leaving

the environment. Consequently, when TO > 0, both task completion rate and learning

gain generally increased with when AO increased. On the other hand, when TO = 0, no

new type of tasks was introduced to the environment. So, increasing AO would result in

higher net loss of capabilities on average as new agents came in to solve the same old

problems, whereas older agents that would have solved tasks, and as a result learned

some capabilities, would leave the environment. This behavior was somewhat

unexpected, and went on to show the complexity of considering environmental openness

in ad hoc scenario. This is why we observe that introducing new agents—i.e., increasing

AO did not necessarily help learning if newer tasks were not being introduced to

“motivate” the agents. Hence learning gain (L) decreased when AO increased in Region

III, but task completion rate was not affected as there was enough expertise in the

environment to solve all the tasks (500 in total).

	

www.manaraa.com

	

Figure 3.1 Task selection strategy with best task completion and learning gain per AO-
TO combination with the number of non-zero initial capabilities = 5. S = best performing

task selection strategy, T = # of total tasks solved, L = total learning gain.
	

 Investigating Task Selection Strategies’ Performance in Environment with

Different AO and TO

As per Figure 3.1, it is clear that no one task selection strategy dominates all

situations. For different combinations of AO and TO, the best task selection strategy

varies. In general, we can divide our observations of the results in Figure 1 into four

regions: Region I: 0.25 ≤ 𝐴𝑂 ≤ 1 and 0.25 ≤ 	𝑇𝑂 ≤ 0.75; Region II: 0.25 ≤ 𝐴𝑂 ≤ 1

and TO = 1; Region III: 0 ≤ 𝐴𝑂 ≤ 1 and 𝑇𝑂 = 0; Region IV: 𝐴𝑂 = 0 and 0.25 ≤

𝑇𝑂 ≤ 1. First, in Region I, when the tasks in the environment became more open but not

yet completely open (i.e., 𝑇𝑂 = 1), and the agents in the environment became more open,

we observed that the strategy MTPU_L<S—note that other strategies (MTPU+AO and

MTPU+TO) shown in Region I all were reduced to the same Strategy MTPU_L<S—

www.manaraa.com

which weighs potential learning utility (𝑤� = 0.25) smaller than the potential tasks

solving utility (𝑤y = 0.75), performed the best. This result shows that as both agents and

tasks in the environment are open, the learning utility plays a less important role than

tasks solving utility in terms of tasks completion. When AO is non-zero, new agents are

introduced and old agents leave with their learned capabilities. As a result, agents have

fewer opportunities to use their new learned capabilities to solve tasks before they leave.

Combined with the fact that new, previously unknown tasks were also introduced into the

environment, the learned capabilities may not be used for these new introduced tasks.

Thus, MTPU_L<S, by emphasizing task solving more than learning, was able to perform

better than other strategies.

Second, in Region II, when tasks in the environment were completely open, the

observed best strategy is MTPU+TO, which takes only TO into the account when

estimating total potential utility. Since 𝑇𝑂 = 1 in this region, the weight of learning

utility became 0, as a result, this strategy actually only considered the tasks solving

utility. Upon further consideration, this result was actually expected as new tasks were

always different with previously seen tasks when 𝑇𝑂 = 1, the capabilities agents learned

from previously seen tasks were more likely to be not applicable for the new, unknown

tasks. Hence considering learning did not necessarily benefit the potential rewards in the

future and the strategy MTPU+TO, which would maximize the immediate reward in this

situation, turned out to be the best performing one.

Third, in Region III, we observed that the best strategy varied. Actually, our

simulation data shows that there were no best strategies for any AO-TO combinations in

this region. In this region, though not shown in the graph, all strategies indeed performed

www.manaraa.com

equally well, except for Strategy 7 (MTPU+ATO). The difference between the best

performing strategies and the worst performing strategies in terms of task completion was

within 0.001% and the difference in terms learning was within 0.01% for all AO-TO

combinations in this region for Strategies 1-6. However, for Strategy 7, recall that at

𝐴𝑂 = 0, 𝑇𝑂 = 0, the weights for considering task completion and learning would be 0

and thus Strategy 7 ended up with agents not bidding for any task. Note also that when

the tasks were closed, i.e., 𝑇𝑂 = 0, and no new tasks were introduced into the

environment, agents were solving the same types of tasks all the time; hence every task

selection strategy produced very similar results for every task.

Fourth, in Region IV, where 𝐴𝑂 = 0 and TO > 0, the best strategies were

MTPU+AO (Strategy 5) and MTPU+ATO (Strategy 7). Notice that in this region, 𝐴𝑂 =

0, which made both strategies simplify to consider only the utilities from solving the

tasks. In this region, agents were closed, i.e., no agents would leave and no new agents

would enter the environment. Hence agents did not have to worry about agents with

expertise from whom it could learn useful skills becoming unavailable. Indeed, the

expertise would always stay in the environment as reliable resources in such a situation.

Thus, agents focusing getting more immediate rewards would be able to leverage that—

as in Strategies 5 and 7— to their advantage, as observed in this region of Figure 1.

Therefore, when 𝐴𝑂 = 0 and 𝑇𝑂 > 0, the task selecting strategies which put emphasis

on the utilities from solving the tasks such as MTPU+AO and MTPU+ATO were the best

choices.

Based on these observations, we see that agents considering AO and TO in their

task selection strategies could indeed improve their utilities, that these agents could

www.manaraa.com

leverage the dynamics in the environment to their advantage in ad hoc team formation.

However, a key issue not addressed in our design is that right now, we used the

“informed perception” of AO and TO. What would happen if agents were required to

perceive both openness on their own? How would they bootstrap their task selection

when they did not have sufficient data to model both openness? Or would agents give up

on using AO and TO in their strategies if they realized they could not perceive them

accurately due to incomplete information? We aim to investigate different ways of

perceiving openness in our future work.

 Investigating the Impact of Number of Nonzero Initial Capabilities

How would the agents perform differently if they were created with different

number of nonzero initial capabilities? That is, if they were more capable or less capable

at the start of the simulation, would different task selection strategies perform differently

and would the impacts of AO and TO be mitigated or magnified?

For this experiment, we refer to Figure 3.1 where the number of nonzero initial

capabilities was 5—i.e., with more capable agents—and Figure 3.2 where it was 1—i.e.,

with less capable agents. Note that we also ran a set of simulations using 3 nonzero

initial capabilities per agent, but observed that its results were essentially the same as

those shown in Figure 3.1.

Comparing Figures 3.1 and 3.2, we see two key differences. First, when tasks were

closed, i.e., 𝑇𝑂 = 0, along the x-axis, as agents became more open, there was a

consistent increase in T observed in Figure 3.2 but not in Figure 3.1. The reason for this

increase is because agents were solving the same type of tasks, and due to the fact that the

www.manaraa.com

environment lacked expertise—as agents in Figure 3.2 were less capable, new agents

coming into the environment could bring in capabilities that were not present in the

environment. This would help the agents solve some previously unsolvable tasks.

Second, in Region I, while steady trends were observed in Figure 3.1, it is not so in

Figure 3.2. For example, we see that both S and L increased as AO increased, and both

decreased as TO increased, in Figure 3.1. But in Figure 3.2, such trends were not

apparent. We speculate that because of low-capability agents in Figure 3.2, due to the

lack of opportunities to qualify for and thus solve tasks, the agents also did not have

sufficient opportunities to learn. And thus, this also implies that considering AO and TO

in tasks selection strategies might not be worthwhile.

Third, where 𝑇𝑂 = 0.25, and 𝐴𝑂 = (0.25, 0.5, 0.75, 1), MTPU_L<S (Strategy

4.2)—note that Strategy 5 reduced to Strategy 4.2 at AO = 0.25—performed best in

Figure 3.1 whereas MLO (Strategy 2) did so in Figure 3.2. Upon further consideration,

we realize that when the number of non-zero initial capabilities = 1, as TO was

sufficiently low (e.g., 0.25), agents tried to learn because there was a relatively higher

chance of seeing old tasks in the environment, and improving skills that were required for

those tasks, which in turn would improve their chance of actually solving the tasks. Thus,

agents selecting tasks emphasizing learning performed better as in Strategy 2 (MLO). On

the other hand, when the number of non-zero initial capabilities = 5, even when TO was

very low, agents still had a relatively higher variety of skills, enabling them to

concentrate on solving tasks rather than learning. This is reflected by MTPU_L<S

(Strategy 4.2), which focuses more on task solving (75%) than on learning (25%).

www.manaraa.com

Figure 3.2 Task selection strategy with best task completion and Learning gain per AO-
TO combination with number of non-zero initial capabilities = 1. S = best performing

task selection strategy, T = # of total tasks solved, L = total learning gain.
	

3.5 Conclusions

We have developed an ad hoc team formation framework that takes into account

learning and task solving under varying degrees of environmental openness. The learning

involved is based on “learning by observation” and “learning by doing” modeling

learning theory on the zone of proximal distance. An additional emphasis here is about

how an agent can choose a subtask to do such that joining a team to help complete an

overall task allows the agent to position itself to gain from learning, from doing the

subtask and from observing others working in the team. Furthermore, we have devised

mechanisms to simulate agent and task openness. Running simulations of this framework,

we were able to study various effects of considering agent openness (AO) and task

openness (TO) in ad-hoc team formation. We were able to see that AO and TO are

www.manaraa.com

important in ad hoc team formation. Based on how the task completion rate as well as

learning gain varied with different levels of AO and TO, it is clear that these two factors

should be considered to more comprehensively represent real world ad hoc teams. First,

AO and TO change the way teams are formed. With environment being open, agents

need to factor in the possibility of new agents and tasks entering the environment in order

to make better decisions in terms of joining a team. Second, AO impacts learning, with

the introduction of new agents specially boosting the learning when new tasks are also

being introduced into the environment. TO makes it difficult for agents to solve the tasks.

The possibility of new tasks emerging in the environment means newer agents entering

the environment can be helpful as they could bring newer capabilities.

Having now established the importance of AO and TO, gaining insights into the

relationship between the two factors, and investigating the effectiveness of several

openness-based task selection strategies, we have identified several key next steps to

continue with this line of research. First, we will explore more realistic ways to perceive

openness—as our “informed perception” scenario where agents know both AO and TO

exactly, is not ideal—such as (1) NoSharing, where agents model on their own without

sharing information with each other, (2) Sharing, where agents share information to

model the openness together. Second, as reported in Section 3.4.2.1, we see for 𝑇𝑂 = 0,

increasing AO decreases the learning gain. Furthermore, as reported in Section 3.4.2.3,

we see no clear effect of increasing AO in Regions I and II from Figure 2 We need to

further explore this emergent behavior to better understand the complex relationship

between AO and TO in ad hoc teams. Third, we will consider the impact of both teaching

and learning while modeling agent’s behavior, particularly incorporating the fundamental

www.manaraa.com

game-theoretic work from (Stone, Gan, et al., 2010). This will require agents to consider

the potential gain from teaching another agent, as opposed to only considering potential

gain from learning from other. Fourth, we will consider agent reliability in terms of agent

possibly failing to complete tasks to incorporate (perceived) solution robustness into

agent reasoning when bidding for tasks, with little or no knowledge of the capabilities of

other agents in the ad hoc team formation environment.

www.manaraa.com

Chapter 4: Collaborative Human Task Assignment for Open Systems

4.1 Introduction

Intelligent agents and multiagent systems have been used in a wide variety of

application to support human activities and decision making. For instance, there are

autonomous personal assistants that support their users in carrying out tasks, managing

schedules, and so forth. For example, Chalupsky et al. (2002) and Tambe et al. (2008)

described Electric Elves that helped humans in accomplishing organizational activities,

such as rescheduling meetings, selecting presenters for research meetings, tracking

people’s locations, and organizing lunch meetings. Myers et al. (2007) described a

system that relieved the user of routine tasks and intervened in situations where cognitive

overload leads to oversights or mistakes by the user. Berry et al. (2006) described a

personalized agent called PTIME for time management and meeting scheduling as part of

a larger assistive agent system called CALO. There are also collaboration support

systems aimed at identifying for human users other human users to help with problem

solving, teamwork, and learning. For example, Vassileva et al. (2015) described PHelpS

that helped workers find appropriate helpers among their peers when they were

encountering problems while interacting with their database, and I-Help that matched

students with their peer helpers for university courses. Khandaker et al. (2011) described

computer-supported collaborative learning applications called I-MINDS and

ClassroomWiki to form optimal student teams based on students’ tracked and modeled

behaviors. Finally, Sklar and Richard (2006) pointed out, in addition to peer learning

agents, that there were also pedagogical agents and demonstrating agents used in human

learning systems. Pedagogical agents (Heidig & Clarebout, 2011) are designed to

www.manaraa.com

facilitate learner motivation and learning. They act as tutors and model student learner

profiles and the current state of knowledge to customize their interactions accordingly.

One particular problem that agents are well suited to assist human users with is

collaborative task assignment, where there exist a set of human users and a set of tasks

that require multiple people to combine their individual skills and expertise to work

together towards a common, temporary goal, earning each participant a share of a joint

reward if the task is accomplished successfully. In such a problem, a multiagent solution

is advantageous because agents representing individual human users can first model the

abilities of their assigned users, then find and acquire tasks that best benefit their users,

while at the same time fairly allocate tasks across all users so that the overall system also

benefits. For example, agent-based human collaborative task assignment could be used

to (1) form temporary teams of freelance workers (e.g., independent software developers

or artists) to satisfy contracts from companies lacking the internal expertise to accomplish

tasks (e.g., developing particular pieces of software or graphic design), (2) combine the

expertise and skills of office workers across divisions within large companies to

accomplish tasks needed by the company, or (3) further improve matching students to

peer-based learning tasks in computer-aided education.

However, collaborative task assignment becomes much more challenging within

dynamic, open environments where the system itself changes due to entities coming and

going over time. In particular, we consider two types of openness affecting the

collaborative task assignment problem. First, agent openness occurs whenever the set of

human agents changes as people join and leave the environment over time. This causes

expertise and skills needed to accomplish tasks to become more or less prevalent,

www.manaraa.com

affecting the ability of software agents to find suitable people to accomplish each task.

For instance, if an expert and skilled person leaves the environment, then tasks that could

be successfully accomplished in the past might not be possible anymore. Second, task

openness occurs whenever the set of collaborative tasks changes: both new tasks

requiring different expertise and skills appear and older tasks disappear over time.

People specializing in certain types of tasks might need to adapt what they work on if

those tasks disappear, while other people who had difficulty contributing might become

more useful as new tasks related to their expertise and skills appear.

Both types of openness cause uncertainty within the collaborative task assignment

problem, as software agents do not know which tasks might be successfully

accomplished now or in the future due to fluctuations in both the set of people needed to

complete tasks, as well as the set of tasks itself. Given that there might be multiple tasks

each person could contribute to at any point in time, yet a person can only contribute to

one task at a time, openness makes the problem of selecting appropriate tasks for human

users more difficult for software agents.

In order to address this difficulty, we propose a solution integrating two important

factors into agent reasoning within an auction protocol used to fairly assign people to

collaborative tasks. First, software agents model the uncertainty in task

accomplishment caused by agent and task openness. In particular, agents learn

probabilistic models of the likelihood that both (1) its bid will be accepted and thus its

person matched to a particular task, and (2) enough people with appropriate expertise and

skills will be available so that the task is successfully accomplished. If either the agent’s

bid fails, or enough people cannot be found to satisfy a particular task, then the agent’s

www.manaraa.com

user will not complete a task, reducing the total reward earned by the user. Over a

sequence of available tasks, the agent then uses this probabilistic model to bid on tasks

that will maximize the users’ expected rewards over time.

Second, to further improve reward maximization over time in spite of environment

openness, we are inspired by the fact that the expertise and skills of human users are not

static, but can improve over time through human learning when they complete tasks and

interact during teamwork. In particular, we incorporate realistic models combining two

types of human learning: (1) learning by doing (Henderson, 1984; Leibowitz, et al., 2010;

Shell et al., 2010; Ying, 1967) where people gain ability through experience

accomplishing tasks, and (2) learning by observation (Bandura, 1986, 2004), where

people gain ability by watching collaborators perform activities within the same task that

are currently too difficult for the user. Such models are factored into the agent’s decision

about how to bid on tasks, helping each agent choose tasks that will allow its user to

improve so that it earns greater future rewards. In short, we see that factoring in human

learning is especially important in open environments, as learning is necessary to

counter the possible loss of expertise and skills within the system caused by agent

openness, as well as to develop abilities to complete a wider range of tasks introduced

through task openness.

Using a series of experiments, our empirical results demonstrate: (1) the negative

effects on collaborative task assignment caused by both agent and task openness,

necessitating a solution for handling these challenging properties of real-world

environments, (2) the benefits of reasoning about uncertainty caused by openness when

finding and selecting tasks for human users to complete, including greater task

www.manaraa.com

accomplishment, and (3) the improvements in cumulative rewards earned by users caused

by modeling human learning to promote the non-myopic maximization of task rewards

over uncertain, future tasks.

4.2 Collaborative Task Assignment Problem

One application of intelligent agents to assist human users is in collaborative task

assignment, where software agents are responsible for finding and acquiring tasks for

their human users to complete in collaborative teams. In this section, we describe (1)

how we model the collaborative task problem, and (2) how we refine this model to

account for the complexities caused by environment openness common to real-world

collaborative team assignment problems. In Section 4.3, we will describe how agents

model human learning so that they can reason about the improvements in their users’

expertise and skills over time.

4.2.1 Problem Model

Environments of the collaborative task assignment problem contain three main

components: (1) a set of tasks 𝒯, (2) a set of human users 𝐻 that must collaborate to

complete tasks, and (3) a set of software agents 𝐴, where each agent 𝑎« ∈ 𝐴 is assigned

to a unique human user ℎ ∈ 𝐻 and is responsible for acquiring tasks for the human ℎ to

complete.

We define 𝒯 be a set of all tasks in the environment. Each task 𝑇 ∈ 𝒯 is composed

of multiple subtasks that must be completed by human users. We use 𝜏 to denote a

subtask, and represent each task as a set of subtasks: 𝑇 = {𝜏H, 𝜏I,⋯ , 𝜏 K }.

www.manaraa.com

Let 𝒞 = 𝑐H, 𝑐I, … , 𝑐 P denote the set of all capabilities or unique skills that human

users could have. For example, in a freelance software developer environment, there

could be capabilities defining users’ (i.e., freelance programmers’) abilities to program in

the Java programming language, to write documentation, to design systems, etc. In

contrast, in an office setting, there could be capabilities defining users’ abilities to send

emails, to schedule meetings, to order supplies, etc.

Each subtask	𝜏 requires exactly one capability 𝑐 from the set 𝒞 to complete the

subtask. Each subtask also has a quality threshold 𝑞𝑡 ∈ (0,1] defining how much

expertise in the corresponding capability 𝑐 is needed to complete the subtask. Finally,

each subtask also has a number 𝑛 ∈ ℕ defining the number of people needed to complete

the subtask. Combining this definition of a subtask, we represent each subtask 𝜏Q as the

triple 𝑐Q, 𝑞𝑡Q, 𝑛Q . For notational convenience, we override the notation of a subtask 𝜏Q

to denote that it requires 𝑐Q ∈ 𝒞.

Furthermore, we define 𝐻 to be a set of human users in the environment. Each

human user ℎ ∈ 𝐻 is described by a vector 𝒄𝒂𝒑𝒉 = 𝑐𝑎𝑝«,H, 𝑐𝑎𝑝«,I,⋯ , 𝑐𝑎𝑝«,|𝒞| ∈

[0,1]|𝒞| specifying her expertise with respect to each capability, where 𝑐𝑎𝑝«,Q, denotes

the expertise of human ℎ with respect to the 𝑘-th capability 𝑐Q. Over time, each human

user can improve her capabilities through learning, causing users to be capable of

completing a greater number of possible subtasks over time, and thus act as better

teammates for collaborative tasks. We describe human learning in more detail in Section

4.3 below.

www.manaraa.com

Within the collaborative task problem, we add a constraint to model the restriction

of many real-world environments that a human user can only commit to working on a

single collaborative task at a time. This enables the human to focus all of her energies on

a single objective at once. Thus, each user’s agent does not over-commit its user to

multiple tasks and thus avoid having to deal with multiple teams, which could possibly

risk task failure due to overly busy users, thereby benefitting the user’s collaborative

team. However, users can be assigned to multiple subtasks within the same task, if she

has the appropriate expertise in 𝒄𝒂𝒑𝒉.

Human users are motivated to complete as many tasks as possible, as each task 𝑇

provides a reward 𝑅 ℎ, 𝑇 ∈ ℝ to the human user. Rewards are only earned if the task is

successfully completed, meaning that each subtask 𝜏Q ∈ 𝑇 is completed by the required

number of users 𝑛Q. For example, in a freelance software developer environment, these

rewards could be monetary payments for a collaborative team of developers finishing a

software project. Since tasks are collaborative and different users contribute differently

to tasks, a task’s rewards are shared from a total task reward 𝑅K based on a user’s

contribution to that task:

																													𝑅 ℎ, 𝑇 = ° «,{g ⋅�lg
�g⋅𝑞𝑡𝑇

𝑅K{g∈K 		 	 						(4.1)	

where 𝛿 ℎ, 𝜏Q = 1 if user ℎ was assigned to subtask 𝜏Q, else 0, and 𝑅 ℎ, 𝑇 = 𝑅K²∈¤ .

Over time, the tasks acquired by an agent for its human user ℎ form a sequence 𝑇«l l³´
∞ ,

where 𝑇«l denotes the task human ℎ was assigned to at time 𝑡 (and 𝑇«l = ∅ if ℎ is not

assigned to a task at time 𝑡 with 𝑅 ℎ, ∅ = 0). Ultimately, user ℎ	desires to maximize her

cumulative rewards over the entire sequence of tasks:

www.manaraa.com

max 𝑅(ℎ, 𝑇«l)¶
�³´ (4.2)

Thus, the objective of software agent 𝑎« is to find and assign its user ℎ to a sequence of

tasks over time that maximizes this objective function.

In order to fairly assign tasks to their human users, software agents compete in a

contract net-based (Smith, 1980) auction protocol. In this protocol, a subset of the

available tasks 𝔗 ⊆ 𝒯 are offered for auction and the descriptions of tasks	𝑇 ∈ 𝔗 are

communicated to all software agents. As described above, agents are constrained to

bidding on only a single task to avoid over-committing their human user to multiple

collaborative teams (since users cannot back out of tasks if they win multiple bids, which

would otherwise cause such tasks to fail). Thus, each agent must select a single task to

bid on for its user. To insure fair assignment of tasks for the benefit of the overall

system, the amount each agent 𝑎« bids1 for a task is the capabilities of its user 𝒄𝒂𝒑𝒉.

The auctioneer—representing the system and not any particular human user—

allocates subtasks to agents and their users in a greedy way. For each task, the auctioneer

assigns each subtask 𝜏Q ∈ 𝑇 to the 𝑛Q agents that bid on the task T with the highest user

capability 𝑐𝑎𝑝«,Q. In the case that there are not enough qualifying users for a subtask,

then this subtask will not be assigned, thus the entire task will not be auctioned off. In

other words, it is possible for an agent to win a bid for its user (matching the user to at

least one subtask in the task), yet the task as a whole will not be auctioned off (and thus

no collaborative team formed) if there are not enough qualifying users for every subtask

of that task.

																																																								
1 We assume here that the capabilities of a human user 𝒄𝒂𝒑𝒉 are known by an agent 𝑎« . Depending on the domain, this knowledge

could be acquired by 𝑎«	interacting with its human user (e.g., to administer tests) or with other users (e.g., feedback from an expert).

www.manaraa.com

4.2.2 Modeling Environment Openness

As introduced in Section 4.1, many real-world applications of collaborative task

allocation occur in complex environments that also contain the challenging property of

environment openness. In this thesis, we consider two types of openness: both (1) agent

openness and (2) task openness. We now describe how we model these types of

openness in task allocation problem.

Agent Openness First, agent openness represents the phenomenon that human

users (who are also intelligent, non-artificial agents) join and leave the environment over

time. For example, in a freelance software development environment, individual

developers might leave software companies to do independent freelance work instead,

whereas others might switch from being freelance workers to working solely for a

software company. Likewise, in an office worker environment, the company might hire

new employees and let others go over time. This definition of agent openness is closely

related to the definition used in the intelligent agents and multiagent systems literature for

software or hardware agents that join and leave complex environments over time (e.g.,

Huynh et al., 2006; Jamroga et al., 2013; Pinyol & Sabater-Mir, 2013; Shehory, 2001).

Within our problem model, the set of human users 𝐻 (and their corresponding

software agents 𝐴) is non-stationary and changes over time. At any point in time, some

users might be removed and others might be added. As a result, these sets are extended

to reflect the current available humans (and software agents) at a particular time 𝑡 as 𝐻l

(and 𝐴l). We assume that agents are not aware of which of their peers are around at any

point in time, nor that the agents even know how many peers they have.

www.manaraa.com

The primary implication of agent openness is that as a new human user ℎ joins the

environment, new expertise 𝒄𝒂𝒑𝒉 becomes available to assist with completing

collaborative tasks. However, as an existing human user ℎ leaves the environment, so too

does their expertise 𝒄𝒂𝒑𝒉, potentially making it more difficult for collaborative tasks to

be completed. This is especially problematic since human users are capable of learning

to improve their expertise over time, so the amount of overall expertise leaving the

system due to openness could exceed the amount of expertise joining the system.

Task Openness Second, task openness represents the phenomenon that the set of

tasks that require collaboration to solve could also change. For example, in a freelance

software development environment, changes in programming paradigms and the types of

software needed by clients would cause different collaborative tasks to exist over time.

Moreover, in an office worker environment, different seasonal activities of the company

could require different tasks over time.

Within our problem model, the overall set of tasks 𝒯is non-stationary and changes

over time. At any point in time, some tasks might be removed and others might be

added. As a result, this set is extended to reflect the current possible tasks at a particular

time 𝑡 as 𝒯l.

The primary implication of task openness is that as the set of tasks changes over

time, different expertise and capabilities are required. As easier tasks become available

or difficult tasks disappear, more users will be qualified to complete tasks, whereas when

more difficult tasks become available or easy tasks disappear, then fewer users will be

qualified to complete tasks. Each of these phenomena affects the ability of agents to

www.manaraa.com

acquire tasks for their users: the former creates more competition between agents for

tasks, whereas the latter makes it more difficult to find a suitable task for a user.

Overall, both task openness and agent openness make it very difficult for agents to

select tasks for their users that maximize long-term rewards as they introduce uncertainty

into both (1) whether the agent will win a bid for a task, which is vital since agents are

constrained to a single bid per auction, and (2) what tasks will be available in the future,

and thus what types of capabilities its users will need to learn to complete those tasks.

Of note, our work on agent and task openness within a problem model such as that

described in Section 4.2.1 is similar to and builds upon prior research by Jumadinova et

al. (2014). In particular, their research explored the impacts of agent and task openness

when agents work together in ad hoc teams (similar to collaborative human task

assignment) under the assumption of simple rules for forming teams based on agent

capabilities. Our research, on the other hand, proposes a solution for directly reasoning

about the uncertainties caused by agent and task openness, then maximizes the rewards

received from collaborative tasks. We also add principled computational models of

human learning based on an extensive literature review to improve how agents reason

about the benefits of task accomplishment for human users.

4.3 Human Learning Model

To model human learning, we focus on two particular learning paradigms: learning

by doing and learning by observation.

Learning By Doing. Learning by doing can be viewed from two perspectives.

From an economic theory viewpoint, it is the process of performing a task or carrying out

www.manaraa.com

an action, and learning from that before performing the same task again. It is considered

an adaptive approach to multi-period decision making (Ying, 1967). From a cognitive

learning viewpoint, it can be seen as repetition, as outlined in the Unified Learning Model

(ULM) (Shell et al., 2010), where it is a process by which knowledge is reinforced

through repeated access, exposure, or application. Newell and Rosenbloom (1993) stated

that “almost always, practice brings improvement, and more practice brings more

improvement.”

To model learning by doing in our problem, we borrow clues from experience

curve effects (Henderson, 1984) to derive the learning gain function for a human user

performing learning by doing, and learning curve to characterize different types of tasks.

The experience curve effects indicate that over time, the more units of a good that a

company produces, the average cost per unit is lowered, as the people with the company

accumulate experience and expertise to better produce such good. Meanwhile, depending

on the skills or knowledge that are required to perform or master a task, there are

different learning curves. For example, learning how to perform some skills might be

quick at first, but difficult to master (e.g., playing strategic games such as Go or chess),

whereas others skills might have slow learning at first, then faster with more experience

(e.g., learning to ride a bicycle or swim). In short, we see that different task types may

impose different learning curves, such as power law, linear, exponential, and sigmoidal

(Leibowitz et al., 2010; Newell & Rosenbloom, 1993). In our problem, we use the

exponential learning equation for success-based learning outlined by Leibowitz et al.

(2010). According to Leibowitz et al., a learning equation can be modeled as:

 𝑝� = 𝑝¶ − 𝑝¶ − 𝑝 ∙ 𝑒�»∙y� (4.3)

www.manaraa.com

where p is the performance measure, n is akin to n-th learning episode, such that 𝑝¶ is

the maximum infinite-horizon performance measure achievable, 𝑝´ is the initial

performance measure, 𝑆� is the accumulated sum of all previous performances until, but

not including, the nth episode, and 𝛼 is a constant rate coefficient. Mapping these to our

problem: 𝑝´ refers to a user ℎ’s initial expertise for a particular capability, 𝑐𝑎𝑝«,Q; 𝑝� is

the current expertise of ℎ after n-times performing that capability; and 𝑆� = 𝑝V��H
V³´ .

The change in the performance measure, or learning gain, according to Leibowitz et al.

(2010), is:

 𝑝 = 𝛼𝑝 ∙ 𝑝¶ − 𝑝 (4.4)

The constant rate coefficient 𝛼 caps the amount of learning gain at each episode. (Note

that we will use 𝛼�� to indicate the rate is associated with learning-by-doing.) The

general shape of this curve is a (concave downward) parabola: when a user’s expertise is

low, it learns a little; as its expertise grows, it starts to learn more with a higher learning

gain; then after it peaks, it starts to learn less as its maximum expertise is reached. For

simpler tasks, the initial gain is higher (or more steep); and for more complex tasks, the

initial gain is lower (Roediger & Smith, 2012; Wifall et al., 2014). Thus, for a user ℎ’s

gain via learning by doing for performing a subtask with a learning curve capped by 𝛼��,

using its capability	𝑐𝑎𝑝«,Q, we have:

 𝛥��𝑐𝑎𝑝«,Q = 𝑐𝑎𝑝«,Q = 𝛼�� ∙ 𝑐𝑎𝑝«,Q ∙ 1 − 𝑐𝑎𝑝«,Q (4.5)

In summary, a user’s gain in learning by doing is determined by its current

capability, the learning curve of the capability being learned, and the total amount of

learning depends on the number of times that it has performed the capability.

www.manaraa.com

Learning By Observation. Bandura (2004) described observational learning (or

learning by observation) as knowledge acquisition by learning from the examples

provided by others. Bandura’s social cognitive learning theory (Bandura, 1986)

indicated that there are four stages involved in observational learning: attention, retention

or memory, initiation or reproduction, and motivation.

In our problem, we model learning by observation in the following manner. A user

can learn from observing other users only when they are in the same team collaboratively

solving a task. This allows us to model a user’s attention. To ensure retention (or

memory), each user updates its capability after task execution. Most importantly, to

model initiation (or reproduction), “observers must be physically and intellectually

capable of producing the act.” That is, even when an observer user receives the stimuli

from its observation of the performing user, reproducing the observed action may involve

skills that the user does not yet have. Thus, we model the learning gain function of user

ℎ observing a teammate 𝑗 performing subtask 𝜏a as follows:

 𝛥�o_𝑐𝑎𝑝«,a = 		0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑝 0 ≤ 𝑞𝑡a − 𝑐𝑎𝑝«,a < 𝛽 (4.6)

where 𝛽 is the threshold under which 𝑞𝑡a − 𝑐𝑎𝑝«,a	is small enough for learning by

observation to take place, and 𝑝 for observational learning is modeled similarly from Eqs.

4.3-4.4 above:

 𝑝 = 𝛼�o_ ∙ 𝑞𝑡a − 𝑐𝑎𝑝«,a ∙ 𝛽 − 𝑞𝑡a − 𝑐𝑎𝑝«,a (4.7)

where 𝛼�o_ refers to the cap for the corresponding learning curve for observational

learning for that capability. Note that it is possible for a capability to have different

www.manaraa.com

values of 𝛼�� and 𝛼�o_ as a capability could be easier when it is learned by doing than

when it is learned by observation and vice versa. In summary, gain from learning by

observation is zero if a user observes a subtask being performed that requires a much

higher level of capability (≥ 𝛽). Also, if a user is already capable of performing the

subtask, then it does not learn anymore from observing another user performing the

subtask. Further, a user’s learning gain from observational learning follows the same

sigmoidal curve as for learning by doing, albeit stunted by 𝛽.

4.4 Solution

Given the above descriptions of both the collaborative task assignment problem and

a mathematical approach for modeling human learning within collaborative tasks, we

describe our solution for agent-based reasoning to acquire tasks for human users.

4.4.1 Estimating Expected Task Rewards

Recall that in the collaborative task assignment problem, an agent 𝑎«’s objective is

to maximize the cumulative reward (Eq. 4.2) earned by its user ℎ over the sequence of

tasks acquired by 𝑎« through bidding in the task auction. This requires non-myopic

planning.

However, due to uncertainty caused by agent openness, estimating the reward a

user would earn from a particular task 𝑅(ℎ, 𝑇) if the user were assigned to the task and it

were completed is difficult because the agent does not know which other users exist in

the environment and thus what bids their agents would make and who would be assigned

to different subtasks 𝜏Q ∈ 𝑇.

www.manaraa.com

Instead, the agent needs to estimate an expected task reward that accounts for this

uncertainty. We can model this as:

 𝐸 𝑅 ℎ, 𝑇 = ÂÃ {g ⋅�lg
�g⋅�lg

𝑅K{g∈K (4.8)

where 𝑃« 𝜏Q represents the probability that user ℎ is assigned to subtask 𝜏Q

(assuming that the user is assigned to task 𝑇). Unfortunately, this probability is neither

directly measurable nor computable due to agent openness.

However, we can rely on the following intuition to address this issue. Given the

procedure followed by the auctioneer (c.f., Section 4.2.1), we know that the users with

the highest capability 𝑐𝑎𝑝«,Q are going to be assigned to subtask 𝜏Q. Hence, the higher a

user ℎ’s capability 𝑐𝑎𝑝«,Q, the more likely it is to be selected to perform subtask 𝜏Q.

Thus, we know that

 𝑃« 𝜏Q ∝ 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q = max 0, 𝑐𝑎𝑝«,Q − 𝑞𝑡Q (4.9)

where 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q represents how much more expertise ℎ possesses than required by 𝜏Q.

Therefore, we know that maximizing

 𝐸 𝑅 ℎ, 𝑇 = �Vbb «,{g ⋅�lg
�g⋅�lg

𝑅K{g∈K (4.10)

also maximizes Eq. 4.8. So, we use Eq. 4.10 to estimate expected task rewards

𝐸 𝑅 ℎ, 𝑇 .

4.4.2 Approximating Future Task Rewards

Maximizing a user’s cumulative task rewards (Eq. 4.2) requires not only acquiring

the task that maximizes the user’s current reward when bidding on tasks, but also

www.manaraa.com

maximizing future rewards. Unfortunately, estimating future rewards for the human user

𝑅	(ℎ, 𝑇«l)¶
�³H is even more challenging due to task openness: the agent does not know

what tasks will be available in the future. At the same time, the agent needs to consider

future rewards when deciding how to bid on current tasks because completing a task now

enables the agent’s human user to learn (both by doing and by observation) to improve

her abilities to complete future tasks.

Although learning thus couples future rewards to current decisions—making

planning more challenging as a result of task openness—our solution instead leverages

this property to approximate future task rewards.

Similar to our intuition in Section 4.4.1 to address expected task rewards, we note

that better learning now by a human user will lead to additional opportunities to complete

tasks in the future as the user becomes more and more qualified to complete a wider

range of possible future tasks. Thus, tasks provide a total utility to users that consists of

two parts: (1) rewards for completing the task, and (2) expertise gain in user capabilities

that will lead to future rewards. From this perspective, we can model the total utility of a

task 𝑇	for a user ℎ as:

 𝑈 ℎ, 𝑇 = 𝑅 ℎ, 𝑇 + 𝑈�`?p�(ℎ, 𝑇) (4.11)

Given the computational model for human learning provided in Section 4.3

(defined in the literature on human learning), an agent models the utility of expertise gain

in its human user from a task:

 𝑈�`?p� ℎ, 𝑇 = H
I
𝑈��Æ� ℎ, 𝑇 + 𝑈��no_(ℎ, 𝑇) (4.12)

www.manaraa.com

which balances learning by doing subtask 𝜏Q and learning by observing other subtasks

𝜏a ∈ 𝑇 based on Eqs. 4.5-4.6.

Once again, due to uncertainty in the environment caused by agent openness, an

agent will not know which subtask(s) its user will be responsible for if she is assigned to

a task, so the agent needs to compute expected learning and total utilities:

 𝐸 𝑈 ℎ, 𝑇 = 𝐸 𝑅 ℎ, 𝑇 + 𝐸 𝑈�`?p� ℎ, 𝑇 (4.13)

 𝐸 𝑈�`?p� ℎ, 𝑇 = H
I
𝐸 𝑈��Æ�(ℎ, 𝑇) + H

I
𝐸 𝑈��no_(ℎ, 𝑇) (4.14)

 𝐸 𝑈��Æ� ℎ, 𝑇 = 𝑑𝑖{g∈K 𝑓𝑓 ℎ, 𝜏Q 𝛥��𝑐𝑎𝑝«,Q (4.15)

 𝐸 𝑈��no_ ℎ, 𝑇 = (1 − 𝑑𝑖{Ç∈K 𝑓𝑓 ℎ, 𝜏Q)𝛥�o_𝑐𝑎𝑝«,a (4.16)

where 𝑑𝑖𝑓𝑓(ℎ, 𝜏Q) again approximates the probability that user ℎ will be assigned to

subtask 𝜏Q (and 1 − 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q approximates the probability that the user is not assigned

to subtask 𝜏Q). That is, since 𝑃« 𝜏Q ∝ 𝑑𝑖𝑓𝑓 ℎ, 𝜏Q , maximizing Eq. 4.13 maximizes the

expectation of total utility Eq. 4.11.

Putting all of this together, even though an agent cannot estimate which tasks will

be available for its user in the future due to task openness, selecting tasks that maximize

Eq. 4.13 will balance maximizing both current expected task rewards, as well as the

user’s learning so that she can accomplish more tasks in the future. As a result, the agent

reasons non-myopically as desired and approximately optimizes the user’s cumulative

reward function Eq. 4.2 (where exact optimization is impossible due to agent and task

openness).

www.manaraa.com

4.4.3 Estimating Uncertain Task Assignment

Thus far, we have developed a solution that enables agents to estimate the expected

cumulative rewards over a sequence of tasks (from a current task) for its human user,

assuming that the user is assigned those tasks and they are successfully completed. The

last step of our solution is to account for uncertainty in task assignment itself, as well as

the uncertainty that an assigned task will be successfully completed.

In particular, agent openness also causes uncertainty in whether a user will be

assigned to a task if an agent bids on that task because the agent does not necessarily

know what other agents with which it is competing to acquire collaborative tasks for its

user (where other, more qualified users could instead be amongst the 𝑛Q users selected

for each subtask 𝜏Q). Moreover, assuming that the agent can win a bid for a task, the

agent still does not know whether enough peer users will be found to work with the user

on that task in order to have the task successfully auctioned off. Finally, the agent does

not know if its user’s uncertain peers will successfully complete an assigned task.

To address these uncertainties, our solution models the probability that the agent

will acquire a successful task 𝑇 ∈ 𝔗 for its user in the current round of bidding as

follows. First, we split the probability into three parts: (1) the probability that the agent

will win a submitted bid 𝑃Èo(𝑇) (i.e., the agent is one of the top 𝑛Q bidders for some

subtask 𝜏Q), (2) the probability that the task will be auctioned off 𝑃�bb(𝑇|𝑤𝑏) (i.e.,

enough agents with qualified users bid on the task to form a collaborative team),

conditioned on the event that the agent wins the bid, and (3) the probability of task

success 𝑃_Êdd(𝑇|𝑤𝑏, 𝑜𝑓𝑓), conditioned on it being auctioned off to the user.

www.manaraa.com

Using these probabilities, the agent can then compute a refined expected utility for

its user from bidding on a task 𝑇:

 𝐸 𝑈 ℎ, 𝑇 = 𝑃Èo 𝑇 	 ⋅ 𝑃�bb 𝑇|𝑤𝑏 ⋅ 𝑃yÊdd 𝑇|𝑤𝑏, 𝑜𝑓𝑓 ⋅	

 𝐸 𝑅 ℎ, 𝑇 + 𝐸 𝑈�`?p� ℎ, 𝑇 (4.17)

To operationalize the probabilities 𝑃Èo 𝑇 , 𝑃�bb(𝑇|𝑤𝑏), and 𝑃yÊdd(𝑇|𝑤𝑏, 𝑜𝑓𝑓), an

agent learns these probabilities based on its experience in the auction process over time

as the environment changes due to both agent openness and user learning affecting the

assignment of tasks to suitable users.

To learn 𝑃Èo(𝑇), the agent considers its recent history from bidding on similar

tasks. If the agent won a large number of previous bids on similar tasks, then it has

strong evidence that it is one of the most capable agents with respect to this task, and thus

it will likely win a bid on task 𝑇 as well. Likewise, if it lost many previous bids on

similar tasks, then the agent should believe it has a low probability of winning a bid on

task 𝑇. Based on this intuition, the agent considers the 𝑠-most similar tasks 𝑆(𝑇) that it

previously bid on (where task similarity is calculated using the Euclidian distance

between the 𝑞𝑡Q and 𝑛Q values required for the subtasks 𝜏Q ∈ 𝑇). Within these 𝑠 tasks, it

considers the proportion of won bids:

 𝑃Èo 𝑇 = H
y K hË�ÌÍ

𝑤𝑜𝑛(𝑇�)K�∈y(K) + 𝜖Èo (4.18)

where 𝜖Èo and 𝜖�Èoare small constants providing a non-zero (albeit small) probability of

winning a bid, even if the agent has never previously won a similar task (noting that its

situation might have changed due to human learning and agent openness).

www.manaraa.com

To learn 𝑃�bb(𝑇|𝑤𝑏) we take a very similar approach: counting the number of

similar tasks where the agent won the bid and the task was auctioned off (due to enough

agents bidding to form a collaborative team with their users):

 𝑃�bb 𝑇|𝑤𝑏 = H
y K hË��ÏÏ

𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)K�∈y(K) + 𝜖�bb (4.19)

Finally, to learn 𝑃yÊdd(𝑇|𝑤𝑏, 𝑜𝑓𝑓) we take a very similar approach as well:

counting the number of similar successful tasks where the agent won the bid and the task

was auctioned off:

 𝑃yÊdd 𝑇|𝑤𝑏, 𝑜𝑓𝑓 = H
y K hË�ÑÒÓÓ

𝑠𝑢𝑐𝑐𝑒𝑒𝑑(𝑇�)K�∈y(K) + 𝜖yÊdd (4.20)

Overall, Eq. 4.17 (through Eq. 4.18-4.20) accounts for the various different types of

uncertainty on collaborative task accomplishment caused by agent and task openness, as

well as uncertainty caused by human user learning. Maximizing this function should

approximately maximize the human user’s cumulative rewards (Eq. 4.2), which is

otherwise impossible to optimize directly due to these uncertainties.

4.5 Experimental Setup

To evaluate the performance of our solution in a range of collaborative task

assignment problems, we conducted a series of experiments using simulated human

users. We compared our approach against baseline agents in order to evaluate the

benefits of both (1) our probabilistic modeling of uncertainty caused by agent and task

openness within expected utility calculations, and (2) considering the impact of for

human learning towards future task accomplishment. In particular, we considered three

agent types:

www.manaraa.com

Myopic Baseline (MB): an agent that chooses tasks maximizing Eq. 4.8 without

considering human learning or the likelihoods of task success

Learning-Aware Baseline (LAB): an agent that chooses tasks maximizing Eq. 4.13,

considering human learning but not the likelihoods of task success

Uncertainty and Learning-Aware (ULA): an agent that chooses tasks maximizing Eq.

4.17, considering human learning and itself learning the likelihoods of task success based

on past experience

To evaluate these approaches, we considered three performance measures: (1) the

number of tasks successfully completed per user, evaluating overall system performance,

(2) the average rewards earned per user, evaluating the performance of agents in

maximizing their objective function (Eq. 4.2), and (3) the average learning gain per user,

evaluating the ability of agents to choose tasks that also benefit users’ future tasks.

To consider the effects of a range of environments with different amounts of agent

and task openness, we varied the amount of agent openness (𝐴𝑂) and task openness (𝑇𝑂)

present in the environment. 𝐴𝑂 ∈ 0.0, 0.01, 0.02, 0.05, 0.1 was defined as the

proportion of users ℎ ∈ 𝐻 who left the environment before each bid, as well as the

proportion of agents entering the environment at the same time. Likewise,

𝑇𝑂 ∈ 0.0, 0.01, 0.02, 0.05, 0.1 was defined as the proportion of tasks 𝑇 ∈ 𝒯 that

disappeared and appeared before each bid. Thus, to aid in evaluation, the number of

users and tasks was held constant at 𝐻 = 𝒯 = 100 every round of bidding, even

though the contents of these sets changed over time. Each round 𝑡, 𝔗 = 20 tasks were

randomly sampled from 𝒯l and auctioned off to the agents. Each task was composed of 5

www.manaraa.com

subtasks randomly sampled from 20 total capabilities, requiring random 𝑞𝑡~[0.1, 1.0].

Different capabilities had different learning curves for human users, randomly sampled

from 𝛼��~ 0.1,0.2,0.3,0.4 and 𝛼�o_~ 1,2,3,4 , with 𝛽 = 0.2. Total task rewards were

randomly sampled within [1, 100]. For each 𝐴𝑂, 𝑇𝑂, and agent type combination, we

conducted 100 experimental runs each with 100 rounds of task bidding. Of note, to focus

our evaluation on other aspects of agent reasoning, all assigned tasks succeeded in our

experiments.

4.6 Results

We report our empirical results along two perspectives: (1) analysis of the overall

system performance with respect to environmental impacts due to agent and task

openness and (2) comparison of the three different agent types to investigate the benefits

of both reasoning about uncertainty caused by openness in complex environments, as

well as considering human learning in the agent’s decision making. Note that in the

following, we average the performance metrics by the amount of time a user lived in the

environment, i.e., a user’s lifespan. This is important to provide a fair comparison

because of agent openness. For example, it was possible for a user to live in the

environment for a very short period of time and thus did not have as many opportunities

to participate in the task bidding and completion, gaining rewards and learning.

4.6.1 Impact of Agent and Task Openness

Table 4.1 presents the average numbers of tasks solved per user for different

combinations of agent openness and task openness in the environment. The results are

further shown for the three different agent types, as outlined in Section 4.5 above. We

www.manaraa.com

see that as AO increased, the average number of tasks solved by users decreased.

Although AO could cause low expertise users to leave and high expertise users to join at

any point in time, our results indicate that the overall trending effect of AO was to cause

expertise gained over time through human learning to leave the environment. Thus, the

environment lost more expertise than it could recover from incoming human users,

limiting the number of tasks that could be successfully completed by collaborative teams.

However, as the amount of TO increased, there were no general, consistent trends.

Instead, sometimes the number of tasks completed increased with TO, and other times it

decreased. This appears to be evidence that TO has complex interaction effects with AO

and agent types.

In summary, we see that openness (especially AO) has adverse impacts on the

number of tasks completed by users. In the next section, we will further analyze how

different considerations by agents in choosing which tasks to assign to their users

affected the benefits to human users.

	

www.manaraa.com

Table 4.1 Average Number of Tasks Completed Per User With Standard Errors
(Normalized by User Lifespan)

Ta
sk

 O
pe

nn
es

s

Agent
Type

Agent Openness

0.0 0.01 0.02 0.05 0.10

0

ULA 0.3052
(0.0005)

0.2906
(0.0004)

0.2830
(0.0004)

0.2695
(0.0004)

0.2597
(0.0004)

MB
0.2645

(0.0004)
0.2566

(0.0004)
0.2576

(0.0004)
0.2549

(0.0004)
0.2543

(0.0004)

LAB
0.2606

(0.0004)
0.2544

(0.0004)
0.2543

(0.0004)
0.2529

(0.0004)
0.2490

(0.0004)

0.01

ULA
0.2989

(0.0005)
0.2880

(0.0004)
0.2811

(0.0004)
0.2698

(0.0004)
0.2580

(0.0004)

MB
0.2665

(0.0004)
0.2586

(0.0004)
0.2514

(0.0004)
0.2509

(0.0004)
0.2513

(0.0004)

LAB
0.2639

(0.0004)
0.2574

(0.0004)
0.2560

(0.0004)
0.2527

(0.0004)
0.2524

(0.0004)

0.02

ULA
0.2940

(0.0004)
0.2857

(0.0004)
0.2762

(0.0004)
0.2684

(0.0004)
0.2597

(0.0004)

MB
0.2619

(0.0004)
0.2558

(0.0004)
0.2564

(0.0004)
0.2532

(0.0004)
0.2483

(0.0004)

LAB
0.2625

(0.0004)
0.2615

(0.0004)
0.2557

(0.0004)
0.2493

(0.0004)
0.2492

(0.0004)

0.05

ULA
0.2869

(0.0004)
0.2797

(0.0004)
0.2735

(0.0004)
0.2637

(0.0004)
0.2576

(0.0004)

MB
0.2622

(0.0004)
0.2595

(0.0004)
0.2564

(0.0004)
0.2554

(0.0004)
0.2532

(0.0004)

LAB
0.2634

(0.0004)
0.2596

(0.0004)
0.2562

(0.0004)
0.2525

(0.0004)
0.2532

(0.0004)

0.10

ULA
0.2826

(0.0004)
0.2756

(0.0004)
0.2682

(0.0004)
0.2640

(0.0004)
0.2571

(0.0004)

MB
0.2621

(0.0004)
0.2578

(0.0004)
0.2578

(0.0004)
0.2563

(0.0004)
0.2544

(0.0004)

LAB
0.2629

(0.0004)
0.2575

(0.0004)
0.2566

(0.0004)
0.2522

(0.0004)
0.2515

(0.0004)

	

www.manaraa.com

Table 4.2 Average Reward Per User With Standard Errors (Normalized by User
Lifespan)

Ta
sk

 O
pe

nn
es

s

Agent
Type

Agent Openness

0.0 0.01 0.02 0.05 0.10

0.0

ULA 2.4374
(0.0045)

2.3717
(0.0045)

2.3101
(0.0045)

2.1917
(0.0044)

2.0887
(0.0043)

MB
2.1429

(0.0043)
2.1013

(0.0043)
2.0907

(0.0043)
2.0566

(0.0043)
2.0408

(0.0042)

LAB
2.1090

(0.0043)
2.0833

(0.0043)
2.0895

(0.0043)
2.0335

(0.0042)
2.0088

(0.0042)

0.01

ULA
2.3904

(0.0045)
2.3161

(0.0045)
2.2860

(0.0045)
2.1948

(0.0044)
2.0895

(0.0043)

MB
2.1482

(0.0043)
2.1240

(0.0045)
2.0810

(0.0043)
2.0332

(0.0043)
2.0042

(0.0042)

LAB
2.1467

(0.0043)
2.0964

(0.0043)
2.0614

(0.0043)
2.0669

(0.0043)
2.0250

(0.0042)

0.02

ULA
2.3523

(0.0045)
2.3276

(0.0045)
2.2589

(0.0045)
2.1955

(0.0044)
2.0965

(0.0043)

MB
2.1288

(0.0043)
2.0857

(0.0043)
2.0763

(0.0043)
2.0527

(0.0043)
2.0166

(0.0042)

LAB
2.1356

(0.0043)
2.1200

(0.0043)
2.0859

(0.0043)
2.0263

(0.0043)
2.0253

(0.0042)

0.05

ULA
2.3326

(0.0045)
2.2690

(0.0045)
2.2268

(0.0044)
2.1474

(0.0044)
2.0781

(0.0043)

MB
2.1327

(0.0043)
2.0987

(0.0043)
2.0824

(0.0043)
2.0813

(0.0043)
2.0335

(0.0042)

LAB
2.1488

(0.0043)
2.1101

(0.0043)
2.0850

(0.0043)
2.0440

(0.0043)
2.0480

(0.0042)

0.10

ULA
2.3203

(0.0045)
2.2658

(0.0045)
2.2014

(0.0044)
2.1384

(0.0043)
2.0718

(0.0043)

MB
2.1333

(0.0043)
2.1007

(0.0043)
2.0859

(0.0043)
2.0742

(0.0042)
2.0461

(0.0042)

LAB
2.1219

(0.0043)
2.0933

(0.0043)
2.0794

(0.0043)
2.0388

(0.0043)
2.0276

(0.0042)

	

www.manaraa.com

Table 4.3 Average Learning Gain Per User (Normalized by User Lifespan)

Ta
sk

 O
pe

nn
es

s

 Agent Type

Agent Openness

0.0 0.01 0.02 0.05 0.10

0.0
ULA 0.00314 0.00359 0.00393 0.00437 0.00458
MB 0.00279 0.00308 0.00336 0.00390 0.00434
LAB 0.00279 0.00300 0.00336 0.00389 0.00423

0.01
ULA 0.00340 0.00376 0.00403 0.00442 0.00456
MB 0.00286 0.00319 0.00338 0.00392 0.00430
LAB 0.00286 0.00318 0.00346 0.00392 0.00434

0.02
ULA 0.00351 0.00388 0.00406 0.00440 0.00467
MB 0.00294 0.00324 0.00354 0.00394 0.00433
LAB 0.00295 0.00332 0.00350 0.00393 0.00430

0.05
ULA 0.00375 0.00407 0.00419 0.00444 0.00461
MB 0.00308 0.00340 0.00358 0.00410 0.00437
LAB 0.00312 0.00341 0.00363 0.00399 0.00440

0.10
ULA 0.00389 0.00418 0.00425 0.00465 0.00468
MB 0.00317 0.00345 0.00371 0.00417 0.00446
LAB 0.00317 0.00344 0.00369 0.00409 0.00437

www.manaraa.com

4.6.2 Comparison of Agent Types

First, with respect to task completion (shown in Table 4.1), modeling the

uncertainty in securing successful task assignment by the ULA agents led to significantly

greater task completion than the LAB and MB agents. However, as AO increased, the

ULA agents’ performance still decreased, but maintained higher performance than the

other agents. In a way, we see that while the ULA agents were able leverage its

modeling of uncertainties in the open environment, such modeling was still to an extent

susceptible to the increasing openness in the environment. With increased AO or TO, the

strain on maintaining an accurate probabilistic modeling of task success also increased.

Turning more towards the benefits to individual human users represented by

software agents, Table 4.2 presents the average rewards received by each user in the

environment. First, we see that the ULA agents outperformed the LAB and MB agents

with statistical significance. The relatively similar performances between the LAB and

MB agents imply that the consideration of expected utilities from learning and solving

tasks did not provide marked advantage for the LAB agents over the MB agents that only

considered expected utility from solving tasks. The ULA agents’ ability to model the

uncertainties in the open environment was the difference maker. We will return to this

point shortly.

To further compare the three agent types, we look at the amount of learning per

user, as shown in Table 4.3. Again, the ULA agents were the most effective among the

three agent types, with statistical significance.

www.manaraa.com

4.6.3 Summary

Overall, the ULA agents outperformed the LAB and MB agents in terms of task

completed, rewards received, and learning gains. We conclude that software agents

probabilistically modeling the uncertainties in open environment is important to

achieving better rewards long term for their human users. Although this result is

expected, it is especially promising due to the challenges associated with probabilistic

modeling in open environments. Recall that due to AO and TO, it is impossible for an

agent to directly measure the probabilities in subtask and task assignment. Instead, we

had to approximate these through (1) considering the user’s capabilities compared to

tasks (𝑑𝑖𝑓𝑓 ℎ, 𝜏Q) and (2) by learning from the agent’s experience bidding in the

environment (Eqs. 4.18-4.20). It is very welcoming to observe that these types of clues

and learning can be used to help agents model unmeasurable uncertainty in environments

with challenging types and amounts of openness.

Interestingly, we also note that as AO or TO increased, all three agent types

increased their learning gains. Thus, human learning (as modeled from the literature)

provides users with a natural mechanism to adapt to open environments, acquiring

greater quantities of expertise when it is most needed (either due to learned expertise

leaving the environment with AO or from more diverse tasks requiring more diverse

expertise with TO).

However, referring back to Table 4.1, we see that this increased learning did not

translate into more tasks solved per user. We believe that this was because as users

acquired more expertise and skills, they became qualified for more tasks, leading to more

choices for submitting agents’ bids. Without explicit coordination, this could have led to

www.manaraa.com

increased competition between agents when trying to acquire tasks for their users (since

more users were qualified for the same tasks). In turn, this would result in lost

opportunities to work as a team on other tasks on which some competing agents could

have instead bid. Thus, while increasing openness facilitated more learning gains in

users, it also caused fewer tasks to be solved. We believe that this emergent behavior is

rather unique, brought on by openness in the environment, and we will investigate further

in our future work. We do note that modeling and learning the probabilities of bid

outcomes provided some relief from this problem in ULA agents, since they directly

reasoned about the likelihood of being assigned a task (learning from the choices of other

agents in prior bidding rounds as a form of implicit coordination).

4.7 Conclusions and Future Work

In this chapter, we have described a multiagent solution for agent-based

collaborative human task assignment. We have particularly addressed agent openness

and task openness in this problem. We have further modeled human learning by doing

and by observation, and incorporated these into the agent’s reasoning about how to

acquire tasks for its user. Our solution develops an approach for modeling and learning

unmeasurable uncertainty caused by environment openness to guide its decision making

in maximizing human user reward and learning gains over sequences of tasks.

Experimental results demonstrate that our Uncertainty and Learning-Aware (ULA)

agents are capable of choosing tasks maximizing expected utilities taking into account the

uncertainties and learning. In particular, our ULA agents outperformed two baseline

agent types with statistical significance in terms of tasks completed, rewards received,

and learning gains.

www.manaraa.com

In terms of future work, first, we will investigate the inflection point of when too

much learning is detrimental. We pointed this out in our summary of our results above.

Without coordination, more improved human users would bid for more different tasks as

they try to maximize their long term utility since they become more qualified for more

different tasks. This could cause human expertise to be spread too thin such that only a

few tasks can be successfully auctioned off and executed. Perhaps, an agent that supports

its human user would need to have metareasoning to decide when to learn and when not

to learn based on its success rate of completing tasks. Second, we plan to study the

impacts of amount of diversity in the task types and in the agents’ capabilities. For

example, would considering human learning be able to counter the adverse impacts of

openness in the environment if there was only a small percentage of highly capable

human users in the environment to begin with? If no, then how many highly capable

human users would a system need to be able to “bootstrap” itself up to deal with

openness successfully? Diversity of capabilities in the human users can play a role in

how the system adapts. Likewise, diversity of task types can affect how human users

learn and their ability to complete tasks. Finally, we also plan to further investigate the

impact of learning by doing with learning by observation. Learning by observation, in

particular, can benefit from more diversity of human users and task types in the

environment. Are there alternative models of observational learning? Should software

agents specifically model the expected learning utilities of these two types of learning,

which our current solution does not do?

www.manaraa.com

Chapter 5: Implementation

In multiagent ad hoc team formation of human like agents, environmental openness

plays a crucial role, as agents factorize openness in calculating current versus future

rewards to make team formation decisions. In this chapter, we describe a simulator called

Multi Agent Ad-Hoc Team Formation Simulator (MAAHTFormS), for implementing and

studying various strategies agents can use to make team formation decisions in open

environments. We provide a comprehensive description of our simulation environment,

and present some of the experiments that can be studied with this comprehensive

simulator. MAAHTFormS has been utilized in the research of ad hoc team formations

(Chen, B. Chen, X. Timsina, & Soh, 2015; Chen, Eck, & Soh, 2016) and has potentials

for aiding further research work in this area.

5.1 Introduction

Ad hoc team formation in multiagent systems has been analyzed with focus on

teaching and learning (Stone, Gan, et al., 2010) as well as performance optimization and

environmental openness (Jumadinova et al., 2014). As ad hoc team formation is

collaboration without pre-coordination (Stone, Kaminka, et al., 2010b), there are many

complex factors that needs to be considered in the team formation process (Khandaker &

Soh, 2007; Stone, Gan, et al., 2010; Stone, Kaminka, et al., 2010b).

Jumadinova et al. (2014) talk about the need to consider environmental openness

for agents to make optimal decisions about team formation. Stone and Kraus (2010)

analyze teaching and learning by agents, and if it is better for the system when agents

teach or not. There is a whole host of work done on multi agent ad hoc teams, solving

www.manaraa.com

well-established algorithmic problems like k-armed bandits (Stone, Gan, et al., 2010),

communication and optimization in pursuit domain (Barrett et al., 2011), and modeling

uncertainty in ad hoc team interaction (Agmon et al., 2014).

Since the ad hoc team formation problem in open environment is a complex

problem with many factors, there are many levels of experiments, which can be

conducted, in order to measure the relationship between those factors (e.g., openness,

agent capabilities, agent diversity, and task diversity). MAAHTFormS provides

researchers with a comprehensive testing or simulation environment where they can

study relationships amongst all the factors impacting ad hoc team formation.

Although some result on the relationship between openness and performance in ad

hoc team formation for multiagent system has been studied (Jumadinova et al., 2014),

those results are only scratching the surface. There are relationships between

environmental openness, learning, and agent behavior within this framework, which

needs to be analyzed. Chen et al. (2015) raises one important question about the

relationship between agent openness (AO) and task openness (TO), which is yet to be

comprehensively studied and understood.

There are also questions regarding agent diversity and task diversity, which are

important in ad hoc team formation. Within our framework, agent diversity is the make-

up of agents within the simulation, i.e., what percentages of agents have what kind of

capabilities (expertise)? Questions regarding the impact of agent diversity on system

efficiency and on learning have not been studied. At the same time, tasks within an

environment can also be diverse. We believe the diversity of tasks within an ad hoc

environment will also affect agent’s performance, as diverse tasks need diverse groups of

www.manaraa.com

agents to be completed. The analysis on agent and task diversity will allow us to come up

with better agent reasoning within the ad hoc team formation domain.

In the next sections, we review some of the simulators or testbeds for multiagent

system found in the literature (Section 5.2), discuss our simulation framework (Section

5.3), detail the implementation (Section 5.4 to Section 5.8) and configuration process

(Section 5.9), list the data generated from MAAHTFormS (Section 5.10) and finally

include the scripts for running MAAHTFormS on Holland Commuting Center (HCC)’s

super computer (Section 5.11).

5.2 Related Work

Jumadinova et al. (2014) introduced a multiagent ad hoc collaboration framework,

which considers agent learning in ad hoc environment. This simulation framework allows

agent to strategically choose which capability to learn and which agent to learn from. It

provided us some insight of considering openness in ad hoc simulation environment.

However, this framework has its limitations and needs some more careful treatment in

modeling openness. First, this simulation framework introduced two new parameters,

“agent openness” and “task openness”. but it does not model openness itself. It simply

added and removed agents, introduced and replaced old tasks to the environment, instead

of reason with openness. Second, agents did not model openness and hence they did not

factor the openness into their reasoning when making decisions on choosing tasks. Third,

it is a rather simplistic framework to ascertain the impact of openness in the performance

of agents in terms of tasks solved and learning. For example, it only considered the total

number of subtasks finished and total learning utilities as the impact of openness. On the

www.manaraa.com

other hand, our work also looks at the average values over the number of agents and over

the number of ticks, as well as how these averages change over time, and over how agent

capabilities change over time. This approach allows us to study the impact of openness

in terms of the rate of changes of various metrics. Though the framework considered

agent learning, it was based on a function of preset learning utilities and did not consider

modeling the effectiveness of learning.

Massaguer et al. (2006) provide a multiagent simulation environment, named

DrillSim, in disaster response scenario. It combines drills and simulation into one

augmented reality based simulation environment, which evaluates information

technology solutions by translating them into disaster metrics (e.g. call delay into time to

evacuate etc.). This simulator enables researchers to evaluate many aspects of agent

behaviors like cognitive and physical actions, agent’s role, etc. In addition, DrillSim

provides control over agent role, so that introducing and testing newer agent roles is

simpler.

Fullam et al. (2005) describe the various research objectives that must be answered

by a testbed for Agent Reputation and Trust (ART) and propose a testbed specification

based on those research objectives. They develop a testbed framework that fulfills two

purposes (1) comparative study of different research studies on agent trust and reputation,

known as competition mode and (2) experiment with single strategies, or utilize result

from competition mode for independent study, known as experiment mode. This research

provides one important step towards building and using agent testbed for experimentation

and evaluation of Agent Reputation and Trust (ART) strategies.

www.manaraa.com

Bouron et al. (1990) propose a testbed to study the interaction between

heterogeneous agents. This testbed provides researchers with the ability to control agent

types by specifying their architectures and their behavior. There is also the ability to

configure different parameters like communication between agents and different types of

environment.

The testbeds proposed by Massaguer et al., Fullam et al., Bouron et al. enable

different types of experimentation in agent research. The ability to control the types of

agent and their communication provided a lot of flexibility in setting up experiments. The

simulation framework introduced by Jumadinova et al. (2014) has enabled us to look into

agent openness and task openness in the research of ad hoc team formation, but

MAAHTFormS provides researcher with the ability to configure, simulate agent team

formation experiments, study new environmental factors like agent openness and task

openness with agent modeling openness and agent reasoning about openness, and study

the effectiveness of learning, as well as studying the impact of other factors like agent

and task diversity.

5.3 Simulation Framework

In this section we will discuss the details of the design of our framework, including

the design of work flow, agent and task design, the blackboard and auction design. We

also include the implementation of simulating of openness, agent perceiving openness, as

well as how to configure and run the simulator on Holland Computing Center’s (HCC)

super computer.

www.manaraa.com

5.3.1 Framework Design

The overall architecture of our system can be found in Figure 5.1. It contains four

major components. A set of agents, an admin who controls the environment, and a

blackboard-based publish-subscribe system (Blackboard). In our system, agent does not

have any knowledge about each other beforehand and does not have any preordinations,

they only communicate with each other through Blackboard. Agents inside the simulation

environment can see the available tasks’ information to assist their decision-making. The

overall flow starts by the admin agent introducing agents into the environment from the

agents pool and pulling the tasks into the environment from the tasks pool. The task

information is published on the blackboard for agents to review. The admin agent

controls the environment by introducing new agents and removing old agents according

to the agent openness. New tasks are also introduced according to task openness but tasks

remain in the environment until they are solved. Agents examine the available tasks and

make decisions on which task to bid on according to certain task selection strategies and

submit their bids. After that, the auction will start. The admin agent chooses the winning

agent according to the algorithm (Algorithm 5.1) with which it is deployed (Section 5.6),

and publishes the results to the blackboard for agents to see. After the auction results are

disclosed, agents who get selected will gather together (hence form team) to solve the

task. The tasks that are not solved (not auctioned off) will remain on the blackboard for

the next round of auction together with the newly introduced tasks.

www.manaraa.com

5.3.2 Tasks and Capabilities

In Section 3.3.3 we have stated the notations for tasks and capabilities, for the sake

of completeness of this chapter, we include them here again in brief.

A set of tasks is denoted as 𝒯, and each task 𝑇 ∈ 𝒯 has a set of subtasks:

𝑇 = {𝜏H, 𝜏I,⋯ , 𝜏 K }. Similarly, 𝒞 = 𝑐H, 𝑐I, … , 𝑐 P denotes the set of all capabilities that

agent could have. Each subtask	𝜏 requires exactly one capability 𝑐 from the set 𝒞 to

complete the subtask. For example, in order to solve subtask 𝜏Q, the capability 𝑐Q must be

needed. In addition, each subtask	𝜏Q requires 𝑛Q ∈ ℕ agents to complete and it requires

the minimal quality of capability 𝑞𝑡Q, where 𝑞𝑡Q ∈ 	 (0,1]. Thus, each subtask is a triple

𝑐Q, 𝑞𝑡Q, 𝑛Q . Furthermore a set of agent is denoted as 𝐴, and each agent 𝑎V ∈ 𝐴 is

Figure 5.1 Overall architecture of the multiagent simulation system.

www.manaraa.com

described by 𝒄𝒂𝒑𝒊 = 𝑐𝑎𝑝V,H, 𝑐𝑎𝑝V,I,⋯ , 𝑐𝑎𝑝V,|𝒞| ∈ [0,1]|𝒞| where 𝑐𝑎𝑝V,Q denotes 𝑎V’s

expertise with respect to the 𝑘-th capability 𝑐Q.

5.3.3 Openness

Openness is the key thing in our study. It represents the phenomenon that

agents/tasks join and leave the environment. The focus of this thesis is to investigate the

importance and the impact of openness in ad hoc team formation. In this section, we

describe the two implementations we used to simulate the openness in Chen et al. (2015)

which can be found in Chapter 3, and Chen et al. (2016), which can be found in Chapter

4, respectively.

 Agent Openness

As stated in Section 3.3.2, agent openness refers to the rate of new, previously

unknown agents that are introduced into the environment, while known agents exit the

environment.

We have two implementations for agent openness (AO) in our simulator. In both

implementations, we randomly remove agents from the simulation and introduce agents

that were not previously present in the simulation. The difference is how we remove

agents. We use 𝑁? to represent the total number of agents in the simulation environment,

and 	𝐴𝑂 ∈ 	 [0,1], to represent the agent openness. In Chen et al. (2015), 𝐴𝑂 = 0 means

no new agent is introduced and 𝐴𝑂 = 1 means all the initial agents introduced in tick 1

will be replaced with different agents by the end of the simulation. Hence, the number of

agents to be removed at each tick is 𝑎𝑔𝑒𝑛𝑡𝑃𝑒𝑟𝑇𝑖𝑐𝑘 = (𝑁?/𝑇′) ∗ 𝐴𝑂 where 𝑇′ is total

simulation ticks. Note that (𝑁?/𝑇′) ∗ 𝐴𝑂 is not always an integer, hence we take the

www.manaraa.com

floored values as the number of agents to be removed, and keep accumulating the

decimal values when it reaches 1, then we set 𝑎𝑔𝑒𝑛𝑡𝑃𝑒𝑟𝑇𝑖𝑐𝑘 = (𝑁?/𝑇′) ∗ 𝐴𝑂 + 1. This

allows us to remove 1 more agent in the current tick.

However, in Chen et al. (2016), we decided to implement the AO as the likelihood

of each agent will stay after each tick. At the end of each tick, a uniform random number

generator will generate a decimal number between 0 and 1 for each agent. If this number

is less than or equal to AO, then this agent will leave and a new agent will enter the

environment.

 Task Openness

In Section 3.3.2, the definition of task openness (TO) was given as the rate of new,

previously unseen tasks that are introduced into the environment. In Chen et al. (2015),

the admin initially posts 30 tasks on the blackboard, then the admin will introduce 1 task

at the beginning of each tick. TO determines if this newly introduced task is a new or an

old task. A uniform random number between 0 and 1 will be generated and be compared

with TO, if the number is less than or equal to TO then the task to be posted should be a

new task, otherwise, the task should be an old task. The admin keeps a list of all tasks

that are posted, if a new task needs to be posted, then it chooses a task from the task pool,

different than the ones that are on the list of posted tasks, to post. If an old task needs to

be posted, then the admin randomly chooses a task from the posted task list to post.

Notice that, there will be tasks that did not get auctioned off at the end of each tick and

they will be re-posted onto the blackboard for the auction for the next tick. In summary,

TO is also simulated by introducing tasks which have different sub-tasks and difficulty as

www.manaraa.com

the simulation moves forward, 𝑇𝑂 ∈ 	 [0,1]. One new task is added to the system at each

tick in the simulation and TO = 0 means that each new task has already appeared before

in the environment and TO = 1 means each new task is a different task from the ones

already in the environment (i.e., tasks which have different combinations of subtasks and

difficulty).

However, in Chen et al. (2016), the admin maintains a task pool of 100 tasks, and it

randomly chooses 20 tasks from the task pool to post them on blackboard for auction.

Notice, no tasks will be reposted no matter they are auctioned off or not. The TO

determines the percentage of the tasks in the task pool (100 tasks) needs to be replaced by

the end of each tick.

A third implementation is also included in our simulator. In this implementation,

the admin agent posts 20 tasks at the beginning of every tick. The admin agent keeps a

list containing the task types of the newly posted 20 tasks. After the tasks have been

posted, a uniform random number will be generated for each task on the list, if the

number is less than or equal to TO, then this task will be replaced by a brand new

task/task type and will be introduced into the environment at the beginning of the next

tick. Notice, same as the TO implementation, no matter the task is auctioned off or not, it

will not be reposted for the auction.

5.3.4 Agent Perceiving Openness

 Perceiving Agent Openness

The environmental openness plays an important role on agents considering

potential learning gains, and thus indirectly which team to join. In a dynamic

www.manaraa.com

environment, agents or tasks may enter and leave the environment, hence we consider a

way to model Agent Openness (AO) and Task Openness (TO) (Section 5.3.3).

Here we provide three options for agents to perceive the environmental openness:

(1) NoSharing, where agents model on their own without sharing information with each

other, (2) Sharing, where agents share information to model the openness together, and (3)

Informed, where agents are given the degree of openness by the admin of the

environment.

NoSharing. In our simulation model, let ℒV denote the set of agent 𝑎V’s

collaborators who have left the environment. Each agent 𝑎V keeps track of their

collaborators by storing its collaborators’ information in a set 𝒮V, and checks the

blackboard after every iteration for the information of the agents who have left the

environment and updates 𝒮V . Agent 𝑎V perceives the Agent Openness at time tick 𝑡 using

Eq. 5.1:

𝐴𝑂V(𝑡) =
|	ℒf|
|𝒮f| l

 (5.1)

Imagine a person who is working in a department of a big company. The company

is so big that this person has no way of knowing the human resource changes of the entire

company. The only piece of information this person can acquire is the changes of the

employees in his/her own department, since these people are his/her coworkers

(collaborators). This person can thus assess the company’s human resource changes

based on his/her own observation of his/her own department. If his/her coworkers get

changed so often, then it makes sense to assume that the Agent Openness in this whole

company is high and vice versa.

www.manaraa.com

Sharing. In this case, agents will share the information of the agents with which

they have worked to other agents in the environment and will share the “exited” agents

that they have collaborated before in solving a task. Hence the Agent Openness can be

perceived as in Eq. 5.2. Note that since now all agents share the same model, we do not

denote AO with an underscript i, 𝑁? is the total number of agents.

𝐴𝑂(𝑡) = |ℒØ	∪	ℒÚ	∪	…	∪	ℒÛ�	|
|𝒮Ø	∪	𝒮Ú∪…	∪	𝒮Û�| l

 (5.2)

Using the same example, if the person in the big company shares his/her colleagues’

leaving information with people in other departments and get some information back

from agents in other departments, then he/she would have a better idea of the change of

personnel of the company as a whole.

Informed. The admin can also publish the AO on blackboard, so that every agent

can know the exact AO and make the task selection decisions based on this true AO.

This is represented in Eq. 5.3 as purely a constant value assignment.

𝐴𝑂 𝑡 = 𝐴𝑂 (5.3)

Once again, using the same example, this is akin to the company announcing the

number of employees leaving the company and the number of new employees joining the

company.

 Perceiving Task Openness

Task Openness (TO) is another important factor that affects an agent’s judgment of

expected utilities of solving a particular task—hence directly affect agents’ decisions on

selecting tasks. As mentioned Section 5.3.3.2, TO refers to the rate of new, previously

www.manaraa.com

unseen tasks (task types) that are introduced into the environment, while previously seen

tasks are retired. We provide three options for agents to perceive environmental Task

Openness, similar to the options provided in perceiving Agent Openness:

NoSharing. An agent perceives TO base on the tasks it has seen by itself only, with

no information sharing among agents. Let	𝒯V			be the set of task types (Section 5.5) that

one agent has seen, and let 𝒩V be the set of tasks that one agent has encountered. In each

iteration, when agent 𝑎V checks the blackboard to see which tasks are available. Note that

the tasks posted on blackboard consists of newly posted tasks and the reposted leftover

tasks from last iteration’s auction. The agent adds the task type 𝒯�ÝÞ� of each task 𝑇 it

sees to the set 𝒯V	. Note that it is a set, so if the reposted tasks have been previously added

to this set, it will not be doubly counted. The cardinality of the set 𝒯V, |𝒯V	|, is the total

number of distinct task types seen so far.

Meanwhile, the agent adds each task 𝑇 to set 𝒩V. Note, again, the reposted tasks

that have been seen by this agent before will not be counted again.

We use the ratio of cardinality of the set of distinct task types seen by one agent

and total number of tasks seen by an agent to represent the perceived TO in Eq. 5.4.

𝑇𝑂V(𝑡) =
𝒯f
𝒩f
	
l
																				 (5.4)

For example, if an agent has seen 5 tasks in total, and 3 of them are distinct tasks

(i.e., with different task types), then the TO should be 3/5 =0.6. Thus, based on this

perception, the agent can expect the next task it is about to see has 60% chance to have a

new task type which is different from the ones it has seen before.

www.manaraa.com

Sharing. Agents share information about tasks that they have seen and model TO

together. In this case, agents will share the information of the task types as well as tasks

they have seen so far to other agents in the environment. Hence the Task Openness can

be perceived as in Eq. 5.5. Note that since now all agents share the same model, we do

not denote TO with an underscript i.

𝑇𝑂(𝑡) =
𝒯Ø	∪	𝒯Ú	∪	…	∪	𝒯Û�		
𝒩Ø	∪	𝒩Ú	∪	…	∪	𝒩Û� l

																					 (5.5)

Informed. In this case, the admin will publish the exact TO on blackboard, every

agent has access to it, as shown in Eq. 5.6.

𝑇𝑂 𝑡 = 𝑇𝑂																													 (5.6)

 Different Considerations for Perceiving AO and TO

Note that there is a difference between the ways Agent Openness and Task

Openness are defined: in AO, we do not consider agent types, but in TO, we do consider

task types.

This is because we consider that every agent is unique in our model even when two

agents have the same set of capabilities and each capability has the same quality. On the

contrary, we consider that two tasks have the same task type if they consist the same set

of subtasks and have the same task difficulty levels. (See Section 5.5.2)

The rationale behind this is that agents are capable of learning and their capabilities

are changing dynamically as they live in the simulation environment. As a result, an

agent’s type changes over time. Hence, the makeup of agent types in the environment

www.manaraa.com

changes accordingly as well. But as agents learn and evolve, these changes are to be

expected and should not be considered as part of the agent openness.

Furthermore, agents also develop relationships with other agents they have worked

with. When some agents leave the environment, the agents that are still in the

environment will lose their relationships with those agents. If new agents with exactly

same capabilities as those that left are introduced into the environment, they have no

relationships with those agents already in the environment. Therefore, they are not

considered as the same agents as those that left.

On the other hand, tasks will not change over time. The only thing that matters to

the agents is task types. According to our definition of task types, a group of novice

agents together could solve novice tasks. Similarly, a group of average agents are

expected to solve moderate tasks, and a group of expert agents could solve hard tasks.

Moreover, from the agent perspective, they simply treat the tasks that have the same task

type as exactly the same task. For example, a task that has mopping the floor and

cleaning the window as its two easy subtasks is no different that the other task that is

comprised by same two easy subtasks with slightly different quality and/or number of

agent requirements.

5.4 Agent Design (Agent Type)

In this section, we describe our agent design in detail. Section 5.4.1 lays out the

design and lifecycle of the admin agent. Section 5.4.2 explains how we categorize agents

into different types and the lifecycle of the individual agents in our model.

www.manaraa.com

5.4.1 Admin Agent

The admin is the agent who is controlling the simulation environment. It peruses a

configuration file for the simulation environment parameters. The admin serves three

purposes.

First, it controls agents entering and leaving the environment based on the given

agent openness (AO) parameter. Second, it discovers and decomposes task. Third, it

holds auctions and allocates tasks. Note that, unlike agents (Section 5.4.2) that are able

to solve tasks, the admin does not solve tasks.

There is no communication pathway between the admin and agents to share the

admin’s environment knowledge. Let 𝐴 be the set of all agents in the environment, let

𝑎V ∈ 𝐴 be an agent in 𝐴, to keep AO of the environment close to the given AO

specification, the admin needs to periodically remove a set of agents 𝐴′ from the

environment and introduce the same number of new agents into the environment. The

removed agents 𝐴� will be randomly selected from 𝐴. In the case that agent 𝑎V 	∈ 	𝐴′ is

busy doing a task T, the admin will remove it from the environment after 𝑎V	finishes the

task immediately. The information of the removed agents is stored on the blackboard for

existing agents to use to perceive agent openness in the environment.

The admin is also able to discover tasks from the environment through a domain-

specific protocol. Let 𝑇 denote a task that the admin has discovered. The admin can

decompose the task T into a set of subtasks (recall that 𝑇 = 𝜏H, 𝜏I,⋯ , 𝜏 K , and 𝜏Q is a

triple 𝑐Q, 𝑞𝑡Q, 𝑛Q), with the information of 𝑐Q as the skill or capability required, with its

associated number of required agents 𝑛Q and the minimum threshold of quality 𝑞𝑡Q

www.manaraa.com

required of an agent in order to solve it. The decomposed tasks will be included in a

message and be posted on Blackboard. After the admin posts tasks on the blackboard, it

starts an auction session, as described in Section 5.6, Figure 5.2 below shows the

lifecycle of the admin.

Figure 5.2 The lifecycle of the admin of the environment for our model.
The arrows show the sequence of actions.

www.manaraa.com

5.4.2 Individual Agents

Individual agents are the core task solving forces in our model. They have

capabilities that correspond to the required skills to solve subtasks that are introduced

into the environment. Moreover, each agent can improve their capabilities and update

them dynamically.

We classify our agents into three types: (1) novice agent, (2) average agent, and (3)

expert agent. We first define the capability type. Let 𝑐𝑎𝑝V,Q ∈ 0,1 be the quality of agent

𝑎V’s 𝑘th capability in 𝒄𝒂𝒑𝒊. We define 𝑐𝑎𝑝V,Q as novice capability if 	𝑐𝑎𝑝V,Q ∈ [0.0, 0.3),

𝑐𝑎𝑝V,Q as average capability if 𝑐𝑎𝑝V,Q ∈ [0.3, 0.7], and 𝑐𝑎𝑝V,Q as expert capability if

𝑐𝑎𝑝V,Q ∈ [0.7, 1.0)	(Table 5.1). Let 𝑁 = 𝒞 (see Section 5.3.2) which is the cardinality of

the set of all possible capabilities in the environment. Agents’ types are classified based

on Table 5.2. An agent is classified as Novice agent if 𝑁/3		or more of its capabilities

are novice capabilities, less than 𝑁/3 of its capabilities are average capabilities, and less

than 𝑁/3	of their capabilities are expert capabilities. In addition, an agent is called

Average agents if less than 𝑁/3 of its capabilities are expert capabilities and 𝑁/3 or

more of its capabilities are average capabilities. Moreover, we say an agent is an Expert

agent if 𝑁/3 or more of its capabilities are expert capabilities.

Since our agents have learning ability, the capability types of their capabilities are

changing dynamically during simulation. Hence one agent’s type would change

overtime and will be updated after its capabilities get changed. For example, a novice

agent will be promoted to average agent once more than 𝑁/3 of its capabilities are

www.manaraa.com

average capabilities after learning; a average agent will be promoted to expert agent once

it has 𝑁/3 or more expert capabilities after learning.

Table 5.1 This table shows the classification criterion of agent’s capability types.

Quality Range [0.0, 0.3) [0.3, 0.7) [0.7, 1.0]

Capability Type Novice Average Expert

Table 5.2 This table shows the classification criterion for the agent type based on the
number of capabilities types of its capabilities.

 Number of easy
capabilities

Number of average
capabilities

Number of expert
capabilities

Novice
Agent ≥ 𝑁/3 < 𝑁/3 < 𝑁/3

Average
Agent * ≥ 𝑁/3 < 𝑁/3

Expert
Agent * * ≥ 𝑁/3

	

An individual agent’s lifecycle is shown in Figure 5.3. In each iteration, an agent

starts with checking its status. If its current subtask on hand is not finished—i.e., it is

busy, then it will keep executing the current subtask/subtasks. Otherwise, if it is not busy,

not in middle of executing a subtask, then it checks the blackboard for new tasks as well

as the published list of agents who have left the environment. The agent uses the

information acquired to perceive the environmental Agent Openness (AO) and Task

Openness (TO). Subsequently it uses this information to help analyze tasks based on task

selecting strategies (Section 3.3.5). After that, each agent bids for one best task (if there is

one, otherwise do not bid), submits the bid to blackboard auction and waits for the result.

When the result is available, the agent checks the blackboard for task assignments. If it

www.manaraa.com

wins the bid, it then starts executing its assigned subtasks. If it does not win the bid, it

then goes to the next iteration.

Figure 5.3 The lifecycle of individual agent of the environment for our model. The
arrows show the sequence of actions.

	

5.5 Task Design

In parallel to the agent design, we also break tasks into three categories according

to their difficulty levels. We have (1) easy tasks, (2) moderate tasks, and (3) hard tasks.

Task difficulty levels are defined in Section 5.5.2.

www.manaraa.com

When we consider whether two tasks, say tasks 𝑇} and 𝑇Q, are of the same task

type, they must satisfy two conditions. First, they must have the same set of subtasks.

Second,	𝑇} and 𝑇Q must have the same task difficulty level. The concept of task type is

important, since it is tied to task openness and agents’ perception of tasks openness.

5.5.1 Subtask Difficulty Level

In order to define task difficulty level, we first define subtask difficulty level.

Subtask difficulty is defined in terms the quality threshold it requires as well as the

number of agent it requires. Each subtask 𝜏Q can be classified as easy subtask, moderate

subtask, and hard task. We classify the difficulty level of subtask 𝜏Q based on two

parameters, one is the quality requirement 𝑞𝑡Q , and the other is the number of required

agents,	𝑛Q. Table 5.3 shows the classification criterion.

Table 5.3 This table shows the classification criterion for the difficulty level of subtasks.
Note that 0<β<α<1; 𝑛Q denotes the number of required agents for solving a subtask; 𝑁?

is the total number of agents in the simulation environment. α, β, are parameters.
Subtask difficulty level 1 ≤ 𝑛Q < 𝛽𝑁? 𝛽𝑁¤ ≤ 𝑛Q < 𝛼𝑁? 𝑛 ≥ 𝑛Q𝑁?

0 ≤ 𝑞𝑡Q < 0.3 Easy Moderate Hard

0.3 ≤ 𝑞𝑡Q < 0.7 Moderate Moderate Hard

0.7 ≤ 𝑞𝑡Q < 1.0 Hard Hard Hard

Notice that the classifier in terms of 𝑛Q	is proportional to the total number of agents

in the environment. We do it this way because the difficulty to find certain number of

qualified agents to executing a subtask is proportional to the total number of agents,	𝑁?,

in the environment. For example, if we only have 50 agents in the environment, a

subtask which requires 10 agents would certainly be a difficult one, but if we have 2000

www.manaraa.com

agents in total, then it wouldn’t be difficult any more. Instead, it would be a moderate, or

even easy, subtask in this case.

As an example of this subtask classifier, in the case that we set the total number of

agents 𝑁? = 200, and set 𝛼 = 0.015, and 𝛽 = 0.01, then we would have 𝛽𝑁? = 0.01 ∗

200 = 2, 𝛼𝑁? = 0.015 ∗ 200 = 3. Hence, a subtask which requires 3 or more agents is

classified as hard subtask regardless of the quality requirements of the subtask, and a

subtask requires 2 agents and has a quality requirement of 0.9 would also be a hard

subtask. However, a subtask which requires 2 agents but the quality requirement is either

0.5 or 0.1, it is still be classified as a moderate subtask.

5.5.2 Task Difficulty level

With the definition of the difficulty of subtasks, now we define the difficulty of a

task as follows.

Let the total number of subtasks in one task 𝑇 to be 𝑁K, let ℰK denote the set of

easy subtasks in 𝑇, ℳK be the set of moderate subtasks in 𝑇 and ℋK stands for the set of

hard subtasks in T respectively. For a task 𝑇, if the cardinality of ℋK is greater than or

equal to âã
ä

, regardless of the value of ℳK and ℋK , then we say this task 	𝑇	 is

dominated by hard subtasks, hence classify 	𝑇	 to be a hard task. On the other hand, if a

task 	𝑇	 is not dominated by hard subtasks, i.e. ℳK < âã
ä

 , and the cardinality of ℳK

is greater or equal to âã
ä
	,then we say 𝑇 is dominated by moderate subtasks regardless of

the value of ℰK	 , and hence classify𝑇 to be an moderate task. Finally, if a task 𝑇 is

www.manaraa.com

neither dominated by hard subtasks nor by moderate subtasks then we say 𝑇 is an easy

task (See Table 5.4).

For example, consider the tasks 𝑇H,	𝑇I, 𝑇ä, and 𝑇å in Table 5.5. We have

𝑁KØ	=	𝑁KÚ	=	𝑁Kæ	= 5, then âãØ
ä
= âãÚ

ä
= âãæ

ä
= 2. For 𝑇H, we have ℋKØ < 2 and ℳKØ ≥

2, hence TH is a moderate task. For 𝑇I and 𝑇ä, we have ℋ	KÚ ≥ â	ãÚ
ä
= 2 and ℋKæ ≥

âãæ
ä
= 2, hence both 𝑇I and 𝑇ä are classified to be hard tasks. Moreover, task 𝑇å has 𝑁Kç	=

6, âãç
ä
= 2, ℋKç < 2,	 ℳKç < 2, and ℰKç ≥ 2, therefore, 𝑇å is said to be an easy task.

Table 5.4 This table shows the classification criterion for the difficulty level of tasks.
Here N is the total number of subtasks that comprise the task; ℰ𝑇 , ℳ𝑇 and ℋ𝑇 are the

number of easy subtasks, moderate subtasks, and hard subtasks respectively.
	 ℰ ℳ ℋ

Hard Task * * ≥ 𝑁/3

Moderate Task * ≥ 𝑁/3 < 𝑁/3

Easy Task ≥ 𝑁/3 < 𝑁/3 < 𝑁/3

	

Table 5.5 Examples of tasks that are classified as easy, moderate, and hard tasks. Using
the task difficulty classifier, 𝑻𝟏 is classified as moderate task, 𝑻𝟐, 𝑻𝟑 are hard tasks and

𝑻𝟒 is an easy task
 𝑇H 𝑇I 𝑇ä 𝑇å

ℰ 2 1 2 4

ℳ 2 2 1 1

ℋ 1 2 2 1

N 5 5 5 6

𝑁/3 2 2 2 2

Difficulty
Level Moderate Hard Hard Easy

www.manaraa.com

We now give an example on determine whether the tasks are of the same type.

Consider the tasks in Table 5.6 where tasks𝑇H,	𝑇Iand 𝑇ä have the same set of subtasks,

but each subtask has a different requirement for the minimum number of agents needed

and a different quality threshold. Based on the task difficulty level classification criterion

described in Table 5.4 and the subtask difficulty level classification criterion described in

Table 5.3, given 𝑁? = 200, α = 0.015, and β = 0.01, we can classify 𝑇H as a moderate

task,	𝑇I	a hard task, and 𝑇ä a moderate task. Hence 𝑇H and𝑇äare considered as having the

same task type while the pair𝑇H and 𝑇I, and the pair 𝑇I and 𝑇ä are considered to as having

different task types.

Table 5.6 Example of tasks that can and cannot be considered to have the same task type
𝑇H is a moderate task,	𝑇I is a hard task, and 𝑇ä is a moderate task. 𝑇H and 𝑇ä are

considered as having the same task type while 𝑇H and 𝑇I, also 𝑇I and 𝑇äare considered as
having different task type. Note the subtask difficulty level is determined based on Table

5.3 with 𝑁? = 200, and set 𝛼 = 0.015, and 𝛽 = 0.01
𝑇H

Subtask 𝜏H 𝜏ì 𝜏Hä 𝜏å 𝜏í
𝑛 1 2 3 2 1
𝑞𝑡 0.2 0.4 0.3 0.5 0.5

Subtask Difficulty Level Easy Moderate Hard Moderate Moderate
𝑇I

Subtask 𝜏H 𝜏ì 𝜏Hä 𝜏å 𝜏í
𝑛 2 3 1 1 1
𝑞𝑡 0.7 0.2 0.1 0.4 0.5

Subtask Difficulty Level Hard Hard Easy Moderate Moderate
𝑇ä

Subtask 𝜏H 𝜏ì 𝜏Hä 𝜏å 𝜏í
𝑛 2 2 1 1 2
𝑞𝑡 0.7 0.2 0.1 0.1 0.5

Subtask Difficulty Level Hard Moderate Easy Easy Moderate
	

www.manaraa.com

5.6 Blackboard and Auction Design

The center of our system is a blackboard-based publish-subscribe system

(Wooldridge, 2009).This system provides a place for interacting and coordinating

between agents in the environment, and provides information about current available

tasks to agents. It has been proved that such design can eliminate the demands for explicit

coordination and communication protocols between agents (Stone et al. 2010). In our

design, tasks are allocated through an auction, which is held by admin through the

blackboard. Figure 5.4 shows the timeline of admin and agents communicate and allocate

tasks through blackboard. At the beginning of each iteration, the admin maintains Agent

Openness (AO) by removing and introducing agents. The information of removed agents

is stored on the blackboard by the admin. Then the admin posts a list of messages on the

blackboard, which contains one new task that the admin chose from the task pool as well

as the tasks that have not been auctioned off. Agents in the environment can check these

messages to see current available tasks. Then the admin starts an auction session for all

tasks on the blackboard. If an agent is not busy (idle), then, after perceiving and updating

AO and TO of the environment by accessing the stored list of removed agents as well as

the available tasks on blackboard, each agent analyzes current available tasks on the

blackboard and bids for the one that returns the highest potential utility. To analyze

current available tasks on the blackboard, an agent adheres to a certain task selection

strategy (we have designed several strategies in Section 3.3.5) and bids for at most one

task in one iteration by submitting the bid to the blackboard. After that, the admin gathers

all the bids, allocates the task using a task allocation algorithm (described in the next

paragraph) to assign each task to the best capable agents who bid for the task, and posts

www.manaraa.com

the auction results on the blackboard. Upon the disclosure of the auction results, agents

will be notified and checking back on the blackboard. Winning agents will then start to

execute the subtasks to which they are assigned and other agents will wait for the next

iteration.

During the auction, let 𝐴K denote the set of agents that bid for task	𝑇. For each

subtask𝜏Q ∈ 𝑇, the admin selects the top 𝑛Q agents 𝑎V ∈ 𝐴K that have the highest

capability 𝑐𝑎𝑝V,Q	such that 𝑐𝑎𝑝V,Q is larger than the quality threshold 𝑞𝑡Q. If at least one

subtask fails to have enough qualified agents, then the whole task will fail to be auctioned

Figure 5.4 Admin and agents communicating and allocating tasks through
blackboard. The arrows show information flows between the admin and blackboard as
well as those between agents and blackboard. The sequence of actions is designated

as well.

www.manaraa.com

off. Algorithm 5.1 below shows the details of the auction algorithm the admin agent uses

to allocate tasks.

	

www.manaraa.com

Start Algorithm Auction (Blackboard b)
1. Set	ℳ	 ← 	𝑎𝑙𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑂𝑛𝐵𝑙𝑎𝑐𝑘𝑏𝑜𝑎𝑟𝑑	
2. Foreach message 𝑚V In ℳ Do
4. 𝑆	 ← 	 {∅} // set with assignment pair (𝑎V, 𝜏Q)
5. 𝑇	 ← 	𝑇ℎ𝑒	𝑡𝑎𝑠𝑘	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑	𝑖𝑛	𝑚V
6. 𝐴K ← 	 {𝑎V|	𝑎V 	 ∈ 𝑎𝑙𝑙	𝑎𝑔𝑒𝑛𝑡𝑠	𝑏𝑖𝑑𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	𝑇	}
7. InnerLoop:
8. Foreach subtask 𝜏Q In 𝑇 Do
9. Sort 𝐴Kbase on agents' quality of 𝜏Q from high to low
10. If |𝐴K| 	>= 	𝑛Q Then
11. Let 𝑎} 	← 	the	𝑛Q	th	agent	in	𝐴K
12. If 𝑐𝑎𝑝	},Q > 	𝑞𝑡Q Then
13. For i from 1 to 𝑛Q Do
14. Add the pair (𝑎V, 𝜏Q) to the assignment S
15. End
17. Else
18. Post 𝑚V to b.returnedMessage //Main agents may introduce this task
 again in the future ticks.
19 Break InnerLoop
20. End
21. Else
22. Post 𝑚V to b.returnedMessage
23 Break InnerLoop
24. End
25. End
26. Post assignment S to b
27. Remove 𝑚V from Blackboard
28. End
End Algorithm

Algorithm 5.1 Auction algorithm used by admin to allocate tasks
	

5.7 Probabilistic Model

In this section, we talk about the probabilistic model we used in two of our

included task selection strategies in detail. These two task selection strategies were used

in Chen et al. (2016).

www.manaraa.com

As mentioned in Section 3.3.2, due to the openness, there are uncertainties in the

task assignment. An agent who bids for a task may or may not get the task assignment

due to two reasons: (1) it does not win the bid since the admin agent only chooses top 𝑛Q

bidders for each subtask 𝜏Q) and (2) there are not enough agents with qualified

capabilities bidding on the task to form a collaborative team. Hence, we use two

probabilities to estimate the uncertain task assignment. Recall that 𝑃Èo(T) is the

probability that the agent can win a submitted bid (i.e., the agent is one of the top 𝑛Q

bidders for some subtask 𝜏Q). 𝑃�bb(𝑇|𝑤𝑏) is the probability that the task will be

auctioned off (i.e., enough agents with qualified users bid on the task to form a

collaborative team), conditioned on the event that the agent wins the bid.

For each task, the admin agent will disclose the auction result immediately after the

auction. The result is contained in two hash maps: (1) subtaskWinningAgentMap and (2)

subtaskAssignmentMap. Both hash maps map the subtask id to an arraylist of agent ids.

When examining the subtaskWinningAgentMap, an agent finds the arraylist using the

subtask id of the subtask it bid on, and then tries to find its id in this arraylist. If its id is

found in the list, then the agent won the bid (i.e., it was ranked the as the top 𝑛Q bidders,

and was selected for performing the subtask). Otherwise, it lost the bid. Notice that

winning the bid does not guarantee the agent can get the subtask. Whether the task can be

auctioned off or not depends on if enough qualified agents for each subtask can be found.

If one subtask fails to have enough number of qualified agents, then the whole task fails

to be auctioned off. In the case that the task fails to be auctioned off, arraylists in the

subtaskAssignmentMap will be empty. Agents examine the subtaskAssignmentMap in

the same way to find out if they get the subtask assignment or not.

www.manaraa.com

In order for an agent to learn 𝑃Èo(𝑇), it stores the tasks it has ever attempted (the

bids) with the bidding results (i.e., (1) whether it won the bid and (2) whether it was

assigned the subtask) found in subtaskWinningAgentMap and subtaskAssignmentMap in

agentbidingList. Then the agent computes the Euclidean distance between the task 𝑇 and

all the tasks in the agentbidingList using the 𝑞𝑡Q(the quality threshold this subtask 𝜏Q

requires and 𝑛Q (the minimum number of qualified agents this subtask 𝜏Q requires) values

in subtasks 𝜏Q ∈ 𝑇 to find the most similar s tasks. In our simulations, we set 𝑠 = 5 and

simulation users can change this value accordingly to fit their research needs. We can

now apply Eq. 4.18 in Section 4.4.3 to find 𝑃Èo 𝑇

𝑃Èo 𝑇 =
1

𝑆 𝑇 + 𝜖Èo�
𝑤𝑜𝑛(𝑇�)

K�∈y(K)

+ 𝜖Èo

here 𝑆(𝑇) is the s-most similar tasks that the agent previously bid on, 𝑤𝑜𝑛(𝑇�)K�∈y(K)

gives the count of tasks she won among 𝑆(𝑇), 𝜖Èo = 1/ 𝑆 𝑇 + 1 and

𝜖Èo� = 4/ 𝑆 𝑇 + 1 .

Similarly, we can calculate 𝑃�bb(𝑇|𝑤𝑏) using the Eq. 4.19 in Section 4.4.3

𝑃�bb 𝑇|𝑤𝑏 =

 H
È��(K�)ã�∈Ñ(ã) hË�ÏÏ

� 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)K�∈y(K) + 𝜖�bb

where 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)K�∈y(K) gives the count of tasks that she won and also

auctioned off, 𝜖�bb = 1/ 𝑆 𝑇 + 1 and 𝜖�bb� = 4/ 𝑆 𝑇 + 1 .

Table 5.7 shows how we compute each component of the above two equations:

www.manaraa.com

Table 5.7 Methods of calculating components in Eq. 4.18 and Eq. 4.19

Component in equation Methods of computing

𝑆 𝑇

Compute the Euclidean distance between the task 𝑇 and all
the tasks in the agentbidingList using the 𝑞𝑡Q	and 𝑛Q

values in subtasks 𝜏Q ∈ 𝑇 to find the most similar s tasks.
We set 𝑠 = 5 in our simulations, hence 𝑆 𝑇 = 5.

𝑤𝑜𝑛(𝑇�)
K�∈y(K)

Go over the agentbidingList and sum over the bidding

results for the tasks 𝑇� ∈ 𝑆(𝑇). Recall that agentbidingList
stores all the bidding history, including the bidding results

and task information.

𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑑𝑂𝑓𝑓(𝑇�)
K�∈y(K)

Similar to the method for finding 𝑤𝑜𝑛(𝑇�)K�∈y(K) . Go

over the agentbidingList and sum over the bidding results
for the tasks 𝑇� ∈ 𝑆 𝑇 . If the bidding result for the task is

marked as auctioned off, then add 1 to the Sum.

5.8 Learning

We focus on two types of learning in our simulation, learn by doing and learn by

observation. Our simulator has two implementations of both learning type, and they are

similar in nature but are based on different research papers.

The first implementation was used in Chen et al. (2015) and is discussed in detail in

Section 3.3.4. The learning by doing algorithm is based on Jumadinova et al., (2014). The

learning by observation algorithm was given by us and is based on Vygotsky’s zone of

proximal development (ZPD) theory (Vygotsky, 1978). We include the equations and

code snippet for this implementation below.

www.manaraa.com

The following equations are from Section 3.3.4, Eq. 3.1 and Eq. 3.2 were used for

calculating agent 𝑎V′𝑠 capability gain on capability	𝑘 and for calculating the capability

gain for agent 𝑎a observing agent 𝑎l successfully completing a subtask 𝑘 respectively:

𝐺𝑎𝑖𝑛_`ab 𝑎V, 𝑘 =
𝜂

𝑐𝑎𝑝V,Q + 𝜀

where 𝜂 is a constant denoting the increment in knowledge from self-learning and 𝜀 is a

small number in case 𝑐𝑎𝑝V,Q= 0.

𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘 =

		
0																																																																			𝑖𝑓	𝑥 < 0			

−
𝛽
𝛼I 𝑥

I + 2
𝛽
𝛼 𝑥																																			𝑖𝑓	0 ≤ 𝑥 < 𝛼	

−
𝛽

𝛼 − 1 I 𝑥
I +

2𝛼𝛽
𝛼 − 1 I 𝑥 +

𝛽 1 − 2𝛼
𝛼 − 1 I 			𝑖𝑓	𝛼 ≤ 𝑥 < 1

																			

		

where 𝑥 is the capability difference between agent 𝑎l and agent 𝑎a, 𝑥 = 𝑐𝑎𝑝l,Q −

𝑐𝑎𝑝a,Q		and 𝛽 is the maximum learning gain that 𝑎a can acquire from observing agent 𝑎l,

and α is the capability difference that gives the maximum learning gain. The following

algorithm (Algorithm 5.2) was used for agents to calculate the learning gains and update

its capabilities after the completion of the task in Chen et al. (2015).

www.manaraa.com

Start Algorithm UpdateCapabilities ()

1. 𝑚	 ← 	𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑇ℎ𝑒𝐴𝑔𝑒𝑛𝑡𝐵𝑖𝑑𝑓𝑜𝑟
2. 𝑇	 ← 	𝑇ℎ𝑒	𝑡𝑎𝑠𝑘	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑	𝑖𝑛	𝑚 (note that # = {𝜏H, 𝜏I,⋯ , 𝜏 K })

3. 𝑇� ← 𝜏Q 	𝜏Q ∈ 𝑇	𝑎𝑛𝑑	𝑎𝑔𝑒𝑛𝑡	𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑	𝑖𝑛	}
4. 𝑇�� ← 𝑇	\	𝑇� //Set of subtasks the agent observed
5. Foreach subtask 𝜏Q ∈ 𝑇′ Do //calculate learning by doing gain
6. 𝑎a ← 𝑎𝑔𝑒𝑛𝑡	𝑖𝑡𝑠𝑒𝑙𝑓

7. If 𝑐𝑎𝑝a,Q + 𝐺𝑎𝑖𝑛_`ab 𝑎a, 𝑘 > 1
8. 𝑐𝑎𝑝a,Q ← 1
9. Else
10. 𝑐𝑎𝑝a,Q ← 𝑐𝑎𝑝a,Q + 𝐺𝑎𝑖𝑛_`ab 𝑎a, 𝑘
11. End
12. End

13. Foreach subtask 𝜏Q ∈ 𝑇′′ Do //calculate learning by observation gain, only learn from
the one who gives the max observing gain

14. Set 𝐴 ← agents assigned for 𝜏Q
15. 𝑀𝑎𝑥𝐺𝑎𝑖𝑛 ← 0
16. Foreach 𝑎l ∈ 𝐴
17. If 𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘 > 𝑀𝑎𝑥𝐺𝑎𝑖𝑛
18. 𝑀𝑎𝑥𝐺𝑎𝑖𝑛 ← 𝐺𝑎𝑖𝑛no_`pq` 𝑎a, 𝑎l, 𝑘
19. End
20. End
21. If 𝑐𝑎𝑝a,Q + 𝑀𝑎𝑥𝐺𝑎𝑖𝑛 > 1
22. 𝑐𝑎𝑝a,Q ← 1

23. Else
24. 𝑐𝑎𝑝a,Q ← 𝑐𝑎𝑝a,Q + 𝑀𝑎𝑥𝐺𝑎𝑖𝑛
25. End
26. End

End Algorithm
Algorithm 5.2 Algorithm for calculating the learning gains and updating capabilities

	

The second implementation was used in Chen et al. (2016) and is discussed in

Section 4.3. In this implementation we use the exponential learning equation for success-

based learning (Leibowitz et al., 2010) for learning by doing:

𝛥��𝑐𝑎𝑝«,Q = 𝑐𝑎𝑝«,Q = 𝛼�� ∙ 𝑐𝑎𝑝«,Q ∙ 1 − 𝑐𝑎𝑝«,Q

www.manaraa.com

The learning by observation algorithm was based on Bandura’s social cognitive

learning theory (1986, 2004):

𝛥�o_𝑐𝑎𝑝«,a = 		𝑝 0 ≤ 𝑞𝑡a − 𝑐𝑎𝑝V,a < 𝛽
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝛽 is the threshold under which 𝑞𝑡a − 𝑐𝑎𝑝«,a	is small enough for learning by

observation to take place and

𝑝 = 𝛼�o_ ∙ 𝑞𝑡a − 𝑐𝑎𝑝«,a ∙ 𝛽 − 𝑞𝑡a − 𝑐𝑎𝑝«,a

Agents uses an algorithm very similar to Algorithm 5.2 to update their learning

gains, except (1) now they use the above equation variants to calculate gains from

learning by doing and learning by observation, and (2) they only observe the subtask—

instead of all subtasks performed by teammates—that gives the maximum learning by

observation gain.

5.9 Configurable Parameters

There are different configuration parameters that can be changed, which enables

different type of experimentation and tests within the multiagent ad hoc team formation

problems. All the configuration parameters are discussed in remaining portion of this

section. Table 5.8 shows a summary of the configurable parameters as well as their value

ranges.

	 	

www.manaraa.com

Table 5.8 Configurable parameters and their value ranges
Parameters Category Parameter Specifications

Subtasks Configuration for
individual tasks.

Number of Subtask >=1subtask,
Minimum Quality Threshold per Subtask: [0.0 - 1.0]
Minimum Number of Agent Required per Subtask

>=1agent

Agent Makeup Configuration Percentage of Agent Type : [Any combination adding
up to 100%]

Environmental Openness Agent Openness: [0.0 – 1.0]
Task Openness: [0.0 – 1.0]

Task Selection Strategies Built-in Strategies : [1-10]
Custom Strategies : As many as required

Simulation Length >= 1 tick

AO/TO Perception Sharing, No Sharing, and Informed

No. of Initial Non-Zero
Capabilities >= 1capbability

Tick to Finish >= 1tick

Number of Agents >= 1agent

AO implementation 1 or 2

TO implementation 1, 2 or 3

5.9.1 Subtasks Configuration for Individual Tasks

The numbers and variety of tasks within the simulation environment are

configurable. Tasks configuration includes all the properties of tasks like total number of

tasks available, and distribution of tasks difficulty. There is also a more granular control,

where the properties of each task within a task pool can also be modified. For example,

each task can be modified in terms of (1) the number of subtasks in a task, (2) the

minimum quality threshold that agents are required to solve a subtask, and (3) the

minimum number of agents required to solve each subtask. This configuration allows

www.manaraa.com

researchers to modify tasks based on the environment they are modeling which can

contain tasks which are almost identical to very different, or tasks which are very easy to

solve to very difficult to solve.

5.9.2 Agent Makeup Configuration

The number and types of agents can also be configured in MAAHTFormS. This

configuration allows simulation to contain different mixtures of expert, average, and

novice agents. Moreover, agents can be generated based on certain

mathematical/statistical distributions, allowing researchers to create simulation with truly

varied agent makeup. In order to track agents’ activities throughout the simulation, some

agents can be configured to not be removed from the simulation at all. This configuration

parameter can thus control how many skills agent can have initially, what sort of agent

mixtures the environment can have, etc.

5.9.3 Environmental Openness Configuration

MAAHTFormS also allows the control of both agent and task openness. Thus it is

possible to set agent and task openness to any value between 0.0 to 1.0 and experiment

with different sets of openness values.

5.9.4 Task Selection Strategies

Based on the weights given to learning and solving tasks, MAAHTFormS

technically allows an infinite number of task selection strategies, with strategies using

AO only, TO only and both AO and TO, or neither. We provide some examples of task

selection strategies in Section 3.3.5, which used different weight combinations for

www.manaraa.com

learning and solving tasks, such as 𝑤�	= 0.25 and 𝑤y	= 0.75, 𝑤�	= 0.5 and 𝑤y	= 0.5 etc. In

all cases, the weights of learning and solving tasks sum to exactly 1. This configuration

parameter allows abstracting different task selection strategies based on how agents will

pursue immediate vs. future task rewards. We also include some task selection strategies

that is used by Chen et al. (2016) from Section 4.4. By mapping those choices into the

weight parameters for solving and learning task, creating new task selection strategies

becomes an easy task.

5.9.5 Simulation Length

This parameter controls the length of the simulation, which makes it possible to

perform simulation for different length of time. The unit for the simulation is “tick”,

which is one cycle of operations. For example, in our simulation, when all individual

agents finish their cycle once (Section 5.4.2) and the admin agent finishes its cycle once

(Section 5.4.1), that is the end of 1 tick. In ad hoc teams, a short simulation length might

prevent agents from effectively utilizing the capability they learn whereas a longer

simulation might allow them to actually use their gained capabilities. Some emergent

behaviors might need longer simulation lengths, e.g. 1000 ticks, to be observed. So, this

parameter can be modified and changed, to study agent behavior, overall system behavior

etc. for different period of time.

5.9.6 AO/TO Perception Configuration

Since we have implemented different options to perceive openness as described in

Section 5.3.4, this configuration enables selecting different mechanisms to perceive

openness by the agents. Here we briefly summarize these perception options.

www.manaraa.com

“Sharing” allows agents to share their observations on the agents they worked with

(for agent openness) or on the tasks they encountered, e.g. the tasks they saw on

blackboard as well as the tasks they solved (for task openness). This option makes the

modeling of openness a team effort and every agent has the same openness perception,

since they all have the same information.

In “No Sharing”, agents keep information to themselves. There is no

communication between agents about their observations, agents model openness based on

their entirely own observations. This option usually results in agents having inaccurate

openness perceptions, because each agent has limited observations of the entire

environment.

The “Informed” option allows agents be given the actual openness instead of agents

modeling openness themselves.

Depending upon what kind of agents and environment is being modeled, it makes

sense to have different perception models for openness, as some times agents might

implicitly share some of the openness information to the other agents in the system

whereas other times there might be no communication, implicit or explicit.

5.9.7 Number of Initial Non-Zero Capabilities

Since the number of initial non-zero capabilities represents how many different

types of capabilities an agent possesses before the start of the simulation, this parameter

models the overall initial capability of the entire agent population. This parameter can be

configured to represent a whole spectrum of agent capability makeup from agents which

are very knowledgeable at the beginning of the experiments to agents which know next to

www.manaraa.com

nothing. If the number of initial non-zero capabilities is too small, e.g., 1, a lot of tasks

might not be able to be solved due to lack of expertise in the environment. However, too

much expertise in the environment (the number of initial non-zero capabilities is too

large, e.g., 20) will increase the competition among agents.

5.9.8 Tick to Finish

In our current design, all the tasks in the environment use the same number of ticks

to finish. Tick to Finish refers to the number of ticks it requires to finish each task. The

significance of this parameter is that if an agent is involved in completing a task, then it is

not allowed to bid for another task or subtask. So, the longer the value is, the fewer idle

agents are available in the environment at each tick, and vice versa.

5.9.9 Total Number of Agents (𝑵𝒂)

This parameter specifies the total number of agents in a simulation at each tick.

Based on the AO parameter, old agents are removed and new agents are added by the

auctioneer (admin) during the simulation; but the total number of agents, at each tick, is

always 𝑁?.

5.9.10 AO/TO implementation

We include two AO/TO implementations for users to choose from. The first

AO/TO implementation is used in Chen et al. (2015) and the second AO/TO

implementation is adapted by Chen et al. (2016). Additionally, a third TO

implementation is also available for users to choose from. The details of all AO/TO

implementations can be found in Section 5.3.3 of this chapter.

www.manaraa.com

5.10 Data Generated from the Simulator

We log our simulation outputs and then run a program to do the analysis and

produce a report. We mainly focus on logging individual agent’s behavior such as what

task it bid on, whether it won the bid or not, and whether it get assigned any subtask etc.

Table 5.9 shows the variables we log.

Table 5.9 The variable values logged and its description for the simulation
Variable Name Description

tick The current tick of the simulation

id The id of the agent
numTaskInvolved The total number of tasks that this agent get assigned

during the simulation

taskAssignmentAtCurrentTick The task id of the task that this agent was assigned to at
current tick. If no assignment, this number will be 0

reward The task reward this agent received for help finishing
the current task

taskbidAtCurrentAtCurrentTick The task id of the task that this agent bid on at current
tick. If agent does not bid, this number will be 0

numBidsSumitted The total number of bids this agent submitted during
the simulation

numBidsSumbittedAndWon The total number of winning bids during the simulation

selectedForCurrentBid A Boolean value indicating whether this agent won the
current bid or not

taskTypeBidOn The task type id this agent bid on at current tick

randomSeed The random seed for current simulation

agentOpenness The agent openness for current simulation

taskOpenness The task openness for current simulation

option The task selection strategies this agent is using in
current simulation

numAgentsAssigned The total number of agents the current task (the task
this agent bid on) uses, if this task did not get

www.manaraa.com

auctioned off, the number will be 0. Notice: one agent
could get multiple subtasks. Hence this number does
not always equal the total number of agents the current
task needed

numAgentsRequired The total number of agents the current task (this agent
bid on) needed

taskReward The task reward of the current task (this agent bid on)

selfGain The capability gained through doing the subtask
observationGain The capability gained through observing its teammates

The log files we get from simulation are very large due to the number of variables

we log. For one configuration of a simulation, the log file is about 1 MB if we choose the

number of ticks to be 100. If we choose the number of ticks to be 1000, then the size of

the log file is about 10MB. Sometimes we do need to set the number of ticks to 1000 or

even bigger number to see the emergent behavior. For a full simulation, which means

includes every agent openness, task openness, and option combination, we will get as

many as 5880 log files. (we set AO/TO= [0,0.01,0.02,0.05,0.1,0.2,0.5], Option= [1,2,3,4]

and use 30 random seeds, hence 7×7×4×30 = 5880). Therefore, for a 100-tick full

simulation, our log files size could be almost 6 GB, and near 60 GB for a 1000-tick full

simulation. The size of large log file is a problem and created a challenge for us, since we

do thousands of such simulations, and will run into storage problems very quickly. We

noticed that some of the variables has the same value throughout the simulation hence it

makes sense to exclude them from the log file and put them into the file name to reduce

log file size. Such variables include RandomSeed, AgentOpenness, TaskOpenness, and

Option. After such change, our log file name looks like

“AgentOutput_AO[x]TO[y]Op[z]_[timestamp]”, where “x” is the agent openness value,

www.manaraa.com

“y” is the task openness value, “z” is the task selection strategy number that all the agents

use during the simulation, and the “timestamp” is the date and time the simulation started.

In addition to that, we also included a boolean variable called “agentOutputShort” in

OutputClass.java. If it’s value is set to be true, then we only log the variable values in

Table 5.10.

Table 5.10 Variable values logged and its description for the simulation when
“agentOutputShort” is set to be “ture”

Variable Name Description

tick The current tick of the simulation

id The id of the agent

taskAssigned Whether this agent get assigned to a task or not. 1 means has an
assignment, 0 means not.

bidsWon Whether this agent’s bid won or not. 1 for yes, 0 for no.

taskReward The task reward for the task this agent bid on

rewardGot The task reward this agent got after finishing this task it bid on

selfGain The capability gained through doing the subtask

obsGain The capability gained through observing its teammates

After taking the above actions for reducing the log file size, we successfully

reduces the log file size down to 400 KB for a 100-tick simulation, and about 4 MB for a

1000-tick simulation. Hence for a 100-tick full simulation, our log files size would be 6

GB, and for a 100-tick full simulation, the files size is about 2.4 GB, and 24GB for a

1000-tick simulation. After running the analyzing program, we zip the log files for

archive purposes. The zip process reduces the file size more than 90%, and saves us a lot

of resources.

www.manaraa.com

5.11 Scripts for Running on Super Computer

We utilize the Holland Commuting Center (HCC)’s super computer to run our

simulations. The documentations on how to use HCC super computers can be found on

https://hcc-docs.unl.edu/display/HCCDOC/HCC+Documentation.

Our simulation program is written in Java, hence we make a jar file and put it on

the super computer. We can run our program by executing the following line in terminal

window:

 “java -jar [jar file name] [AO] [TO] [your properties file]

[output directory]”

 where “jar file name” is our simulation jar file’s name, “AO” is the agent openness

value, “TO” is the task openness value, “your properties file” is the properties file that

contains all the task information (our task pool), and “output directory” is the directory

where user wants to store the output log files. The other parameters are all set in

Parameters.java file. We set the program to take the arguments this way in order to take

advantage of HCC’s super computer.

In order to use the HCC’s super computer, we have to make a SLURM file and

submit the SLURM job. The following code snippet in Figure 5.5 shows an example

SLURM file we used for one part of our simulation. Notice that we can submit as many

SLURM files as we need, hence we can split our simulations into many SLURM jobs to

let them run simultaneously. To submit the SLURM file, we just type “$sbatch

[filename].slurm”, where “filename” is your SLURM file name.

	

www.manaraa.com

#!/bin/sh

#SBATCH --time=3:00:00 # Run time in hh:mm:ss

#SBATCH --mem-per-cpu=8G # Maximum memory required per CPU (in megabytes)

#SBATCH --job-name= “20cap_50_50”

#SBATCH --error=/work/soh/bchen/ad-hoc/20capAO0.5TO0.5.err

#SBATCH --output=/work/soh/bchen/ad-hoc/20capAO0.5TO0.5.err

module load java

java -jar ad-hocOp1.jar 0.5 0.5 20choose5.properties /work/soh/bchen/ad-

hoc/20cap/20cap1000tick

Figure 5.5 Sample SLURM file we used in part of our simulation

www.manaraa.com

Chapter 6: Conclusions and Future Work

In this thesis, first, we have developed an auction-based multiagent simulation

framework to study/investigate the impact of Agent Openness (AO) and Task Openness

(TO) in an multiagent task execution scenario. The Java-based simulator that we have

developed is called Multi Agent Ad-Hoc Team Formation Simulator (MAAHTFormS).

We conducted comprehensive experiments, established the importance and necessity of

considering AO and TO in ad hoc team formation problem, and also discovered the

impact of AO and TO on agent learning and task completion under varying degrees of

environmental openness in our task execution scenario. We considered the aspect of

agents learning and evolving, and proposed several agent task selection strategies to

leverage the environmental openness. Our study has gained insights into the relationships

between AO and TO. We have seen that AO and TO change the way teams are formed in

ad hoc setting. When making decisions on which teams to join, agents should consider

the possibility of new agents and tasks entering the environment. Furthermore, we have

seen that AO impacts learning. AO is helpful to boost the learning when new tasks

appears in the environment as new tasks requires new capabilities to solve. We have also

seen that TO makes tasks more challenging for agents to solve.

Second, we have studied an agent-based collaborative human task assignment

problem, which is a direct application of ad hoc team formation problem in open systems.

We have developed solutions for agents to maximize their users’ rewards and learning

gains over sequence of tasks under the environmental openness (AO and TO). More

specifically, we developed a probabilistic model, which agents learns about to guide its

www.manaraa.com

decision making in maximizing human user reward and learning gains and we modeled

human learning and incorporated it into the agent’s reasoning on how to acquire tasks for

its user. we have shown through empirical experiment that our Uncertainty and Learning-

Aware (ULA) agents are capable of choosing tasks maximizing expected utilities taking

into account the uncertainties and learning.

Third, we have developed the aforementioned simulator called Multi Agent Ad-

Hoc Team Formation Simulator (MAAHTFormS), which can be used for very

comprehensive multiagent ad hoc team formation simulation. It simulates the task

openness and agent openness which can be used to analyze and understand the

interrelationships between several important factors in the realm of this problem. More

specifically, MAAHTFormS allows researchers to study team formation in an open

environment, to study develop and test task selection strategies while considering

openness, and to study the impact of diversity, among many other things.

6.1 Future Work

6.1.1 Immediate next Steps

a. Find better ways to model AO

In our current framework, agents model both agent openness and task openness.

Considering both types of openness, the idea was for an agent to develop more effective

task selection strategies to better leverage them. However, we were only able to get good

modeling for task openness. The model for agent openness is not quite accurate so far.

This is because agents can observe the blackboard for task information so they can have

www.manaraa.com

very good ideas about the newly listed tasks as well as the tasks that disappeared. The

only time that an agent will miss the task information is when it was executing tasks.

Hence the model for task openness is very close to the actual value. However, agents

only know other agents through their collaborations in task solving. Due to lack of pre-

coordination and the limited agent information, the perceived agent openness was far off

from the actual value. For the proposed task selecting strategies, agents are given the AO

and TO. We will explore more realistic ways to perceive openness, such as (1)

NoSharing, where agents model on their own without sharing information with each

other, (2) Sharing, where agents share information to model the openness together. This

will be a key next step to take in the future, since sensing the environment and making

autonomous decisions are the fundamental functions of agents. We give agents the AO

and TO information in our current research to simplify the complicity of this problem as

our first step to investigate the impacts of the AO and TO in ad hoc team formation.

b. Different task assignment policies

Our current simulation framework is auction-based. The auctioneer collects all the

bids and assigns the best agents for the tasks. If an agent does not get the task it bids for,

then the agent does not perform any work and will have to wait until the next auction

round. In a more realistic scenario, this agent may still have other skills which can be

used to team up with other agents who also do not get assigned tasks, and together could

accomplish some other tasks. We can explore new task assignment policies to utilize this

under-utilized workforce at each time tick. We believe with the new task assignment

policies, there will be more tasks solved in unit time (per tick per agent) and more

www.manaraa.com

learning will occur. This might counter some negative impact of TO, since there will be

more expertise can be utilized in the system.

c. Different bidding protocols

In our current design, an agent only bids for one best task in the auction according

to the algorithm with which it is deployed. We can explore other bidding protocols such

as allowing agents to submit multiple bids for a single auction. For example, the

algorithm can give the ranks of the preferred tasks, and the system will then allow agents

to have first preferred bid, second preferred bid, etc. We have already seen that there are

lots of tasks did not get auctioned off due to the competition. Many agents try to bid on

the same task but the auctioneer only chooses the best required number of agents for the

task. In this case, lots of agents who lost the bid got no task to do for that round of

auction. This results in good expertise get wasted. Since there were many tasks that the

agents who lost bids are more than capable of, if they have bidden on these tasks, they

could have gotten the task. We believe a well-designed new bidding protocol could help

ease this phenomenal of expertise waste due to the completion, and hence boost the

system performance in general.

d. Consumption of time on tasks

As mentioned in Chapter 5, our current implementation assumes every task takes

the same time, which is 1 tick, to be completed. This is not quite realistic as in the real

world different tasks have different levels of complexity, and they consume different

resources including time. It is obvious that simpler tasks can be done faster and harder

tasks need more time to be completed. This should be considered in the simulation to

www.manaraa.com

make it more realistic. However, this will add a lot of complexity as well into the

problem of estimating the long term rewords, since sometimes completing several easy

tasks can gain more immediate rewards than spending more time on complex tasks, but

the complex tasks may gain the agent more potential rewards if the task have more

learning opportunities.

6.1.2 More “further” next Steps

In terms of further next steps, we have several considerations.

a. Consider teaching

We will consider the impact of both teaching and learning while modeling agent’s

behavior, particularly incorporating the fundamental game-theoretic work from Stone,

Gan, & Kraus (2010). This will require agents to consider the potential gain from

teaching another agent, as opposed to only considering potential gain from learning from

other. Indeed, by teaching other members in the team can gain the teacher agent long

term reward when the learner agent can stay long enough to implement and improve the

team’s utility with what it has learned. Hence, agent openness is a key factor for the

teacher agent to make decisions on whether to teach or not teach. If the learner agent will

leave shortly, teaching would not be beneficial. Instead, the teaching agent will be better

off by improving its own expertise or to complete more tasks to gain immediate rewards.

b. Consider agent reliability

We will consider agent reliability in terms of agent possibly failing to complete

tasks. This can be built into agent reasoning when making the bids for tasks as part of

www.manaraa.com

solution robustness consideration. Agents have little or no knowledge of the capabilities

of other agents in the ad hoc team formation environment, agents can build trusts among

themselves. In addition, agents can build its reputations of being reliable, or not

accountable. When we allow agents to submit multiple bids, if a potential teammate is not

accountable, then instead of risking the task, a better choice will be to decline the bid and

wait for the results of other bids. In agent reasoning, when an agent try to select a task to

bid for, the best potential utility is based on also a probability of successfully executing

the task. We can include a modeling of agent reliability in terms of (1) weather the

potential teammate will be able to carry out the subtask assigned to them successfully, (2)

whether the potential teammates will accept the subtasks. This will make agents smarter

in terms of agent reasoning, and make our system more robust.

c. Investigate diversity

We plan to study the impacts of the amount of diversity in the task types and in the

agents’ capabilities. For example, if the environment only has a small set of highly

capable agents/human to begin with, will the learning be able to counter the impacts of

openness? How many diverse expertise will be good enough for the system in the current

open environment to successfully deal with the openness? Diversity in agent/human

expertise can affect how the system adapts. Likewise, diversity of task types can affect

how agents/human learn and their ability to complete tasks. Too much diverse expertise

in agent population can cause agents to spread their bids to much so that only a few tasks

can be auctioned off or completed as they try to maximize their long-term utility to

become more qualified in more different tasks. Maybe agents should consider when to

learn and when not to learn based on how diverse the tasks are as well as how diverse the

www.manaraa.com

agents are. In addition, agent may need to decide on whether to be an expert in one area,

or to learn more skills to be a generalist.

	

www.manaraa.com

References

Agmon, N., Barrett, S., & Stone, P. (2014). Modeling uncertainty in leading ad hoc
teams. Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-Agent Systems. International Foundation for Autonomous Agents and
Multiagent Systems.

Agmon, N., & Stone, P. (2011). Leading Multiple Ad Hoc Teammates in Joint Action
Settings. Interactive Decision Theory and Game Theory, 2–8. Retrieved from
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/viewPDFInterstitial/3805/
4277

Ahn, L. Von, Maurer, B., Mcmillen, C., Abraham, D., & Blum, M. (2008). reCAPTCHA:
Human-Based Character Recognition via Web Security Measures. Science, 321(12
September 2008), 1465–1468. https://doi.org/10.1126/science.1160379

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory.
Prentice-Hall, Inc.

Bandura, A. (2004). Observational Learning, in J. H. Byrne (Ed.) Learning and Memory.
(2nd ed.). New York: Macmillan Reference USA.

Barrett, S., & Stone, P. (2011). Ad Hoc Teamwork Modeled with Multi-armed Bandits :
An Extension to Discounted Infinite Rewards Categories and Subject Descriptors.
Teacher, (May).

Barrett, S., Stone, P., & Kraus, S. (2011). Empirical evaluation of ad hoc teamwork in the
pursuit domain. In AAMAS (pp. 567–574). Retrieved from
http://dl.acm.org/citation.cfm?id=2031678.2031698

Barrett, S., Stone, P., Kraus, S., & Rosenfeld, A. (2012). Learning teammate models for
ad hoc teamwork. AAMAS Adaptive Learning Agents (ALA) Workshop, 57–63.
Retrieved from http://u.cs.biu.ac.il/~sarit/data/articles/ala2012.pdf

Berry, P., Peintner, B., Conley, K., Gervasio, M., Uribe, T., & Yorke-Smith, N. (2006).
Deploying a personalized time management agent. Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems.
ACM.

Bouron, T., Ferber, J., & Samuel, F. (1990). MAGES: A Multiagent Testbed for
Heterogeneous Agents. Decentralized Artificial Intelligence 2, 221–239.

Caillou, P., Aknine, S., & Pinson, S. (2002). How to Form and Restructure Multi-agent
Coalitions. National Conference on Artificial Intelligence (AAAI 02) Workshop on
Coalition Formation. Edmonton, Canada: AAAI Press.

Chalupsky, H., Gil, A., Knoblock, C. A., Lerman, K., Oh, J., Pynadath, D. V, … Tambe,
M. (2002). Electric Elves: Agent Technology for Supporting Human Organizations.
AI MAGAZINE, 23, 11–24. https://doi.org/10.1.1.111.5145

www.manaraa.com

Chen, B., Chen, X., Timsina, A., & Soh, L. (2015). Considering Agent and Task
Openness in Ad Hoc Team Formation. Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015),
(Aamas), 1861–1862.

Chen, B., Eck, A., & Soh, L. (2016). Collaborative Human Task Assignment for Open
Systems (Extended Abstract). Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2016), (Aamas), 1441–1442.

Fullam, K. K., Klos, T. B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., … Voss, M.
(2005). A specification of the Agent Reputation and Trust (ART) testbed:
experimentation and competition for trust in agent societies. Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems, 512–518. https://doi.org/10.1145/1082473.1082551

Heidig, S., & Clarebout, G. (2011). Do pedagogical agents make a difference to student
motivation and learning? Educational Research Review.
https://doi.org/10.1016/j.edurev.2010.07.004

Henderson, B. D. (1984). The application and misapplication of the experience curve.
Journal of Business Strategy, 4(3), 3–9.

Hewitt, C. (1986). Offices are open systems. ACM Transactions on Information Systems
(TOIS), 4(3), 271–287. Retrieved from http://dl.acm.org/citation.cfm?id=214432

Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2006). An integrated trust and
reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 13(2), 119–154. https://doi.org/10.1007/s10458-005-6825-4

Jamroga, W., Mȩski, A., & Szreter, M. (2013). Modularity and Openness in Modeling
Multi-Agent Systems. Electronic Proceedings in Theoretical Computer Science,
119, 224–239. https://doi.org/10.4204/EPTCS.119.19

Jennings, N. R., Moreau, L., Nicholson, D., Ramchurn, S., Roberts, S., Rodden, T., &
Rogers, A. (2014). Human-agent collectives. Communications of the ACM, 57(12),
80–88. https://doi.org/10.1145/2629559

Jumadinova, J., Dasgupta, P., & Soh, L. K. (2014). Strategic capability-learning for
improved multiagent collaboration in Ad Hoc environments. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 44, 1003–1014.
https://doi.org/10.1109/TSMC.2013.2285527

Kamar, E., Gal, Y., & Grosz, B. J. (2013). Modeling information exchange opportunities
for effective human-computer teamwork. Artificial Intelligence, 195, 528–550.
https://doi.org/10.1016/j.artint.2012.11.007

Khandaker, N., & Soh, L. K. (2007). Formation and Scaffolding Human Coalitions in I-
MINDS—A Computer-Supported Collaborative Learning Environment. AAMAS
Agent-Based Systems for Human Learning & Entertainment Workshop, 64–75.

Khandaker, N., Soh, L. K., Miller, L. D., Eck, A., & Jiang, H. (2011). Lessons learned

www.manaraa.com

from comprehensive deployments of multiagent CSCL applications I-MINDS and
ClassroomWiki. IEEE Transactions on Learning Technologies, 4(1), 47–58.
https://doi.org/10.1109/TLT.2010.28

Leibowitz, N., Baum, B., Enden, G., & Karniel, A. (2010). The exponential learning
equation as a function of successful trials results in sigmoid performance. Journal of
Mathematical Psychology, 54(3), 338–340.
https://doi.org/10.1016/j.jmp.2010.01.006

Maes, P. (1994). Agents that reduce work and information overload. Communications of
the ACM, 37(7), 31–40. https://doi.org/10.1145/176789.176792

Manson, N. C., & O’Neill, O. (2007). Rethinking informed consent in bioethics.
Cambridge University Press.

Marcolino, L. S., Jiang, A. X., & Tambe, M. (2013). Multi-agent team formation:
Diversity beats strength? IJCAI International Joint Conference on Artificial
Intelligence, 279–285.

Myers, K., Berry, P., Blythe, J., & Conley, K. (2007). An intelligent personal assistant for
task and time management. AI Magazine, 28(2), 47–62.
https://doi.org/10.1609/aimag.v28i2.2039

Newell, A., & Rosenbloom, P. (1993). Mechanisms of skill acquisition and the law of
practice. The Soar Papers, (1), 81–135. Retrieved from
http://dl.acm.org/citation.cfm?id=162586

Pinyol, I., & Sabater-Mir, J. (2013). Computational trust and reputation models for open
multi-agent systems: A review. Artificial Intelligence Review, 40(1), 1–25.
https://doi.org/10.1007/s10462-011-9277-z

Roediger, H. L., & Smith, M. a. (2012). The “pure-study” learning curve: The learning
curve without cumulative testing. Memory & Cognition, 40(7), 989–1002.
https://doi.org/10.3758/s13421-012-0213-5

Russell, S., & Norving, P. (1995). Artificial Intelligence: a Modem Approach. Englewood
Cliffs, NJ: Prentice-Hall.

Shehory, O. (2001). Software architecture attributes of multi-agent systems. In Agent-
Oriented Software Engineering (pp. 77–90). Springer Berlin Heidelberg. Retrieved
from http://link.springer.com/chapter/10.1007/3-540-44564-1_5

Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1–2), 165–200.
https://doi.org/10.1016/S0004-3702(98)00045-9

Shell, D. F., Brooks, D. W., Trainin, G., Wilson, K. M., Kauffman, D. F., & Herr, L. M.
(2010). The unified learning model: How motivational, cognitive, and
neurobiological sciences inform best teaching practices. Springer Netherlands.
https://doi.org/10.1007/978-90-481-3215-7

Shoham, Y., & Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-

www.manaraa.com

Theoretic, and Logical Foundations. Cambridge University Press.

Sklar, E., & Richards, D. (2006). The use of agents in human learning systems.
Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, 767–774. https://doi.org/10.1145/1160633.1160768

Smith, R. G. (1980). The contract net protocol: high level communication and control in a
distributed problem solver. IEEE Transactions on Computers, 29(12), 1104–1113.

Soh, L. K., & Tsatsoulis, C. (2002). Satisficing coalition formation among agents.
Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems: Part 3. ACM. https://doi.org/10.1145/545068.545071

Stone, P., Gan, R., & Kraus, S. (2010). To teach or not to teach? Decision making under
uncertainty in ad hoc teams. Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), 117–124.

Stone, P., Kaminka, G. A., & Rosenschein, J. S. (2010a). Leading a best-response
teammate in an ad hoc team. Lecture Notes in Business Information Processing, 59
LNBIP(May), 132–146. https://doi.org/10.1007/978-3-642-15117-0_10

Stone, P., Kaminka, G. a, & Rosenschein, J. S. (2010b). Ad Hoc Autonomous Agent
Teams : Collaboration without Pre-Coordination. Twenty-Fourth AAAI Conference
on Artificial Intelligence, (July), 1504–1509.

Tambe, M. (2008). Electric Elves: What Went Wrong and Why. AI Magazine, 29(2), 23–
31. https://doi.org/10.1609/aimag.v29i2.2123

Vassileva, J., McCalla, G. I., & Greer, J. E. (2015). From Small Seeds Grow Fruitful
Trees: How the PHelpS Peer Help System Stimulated a Diverse and Innovative
Research Agenda over 15 Years. International Journal of Artificial Intelligence in
Education, 1–17. https://doi.org/10.1007/s40593-015-0073-9

Vygotsky, L. S. (1978). Mind in Society. Memory. Boston, MA: Harvard University
Press.

Wifall, T., McMurray, B., & Hazeltine, E. (2014). Perceptual Similarity Affects the
Learning Curve (but Not Necessarily Learning). Journal of Experimental
Psychology: General, 143(1), 312–331. https://doi.org/10.1037/a0030865

Wooldridge, M. (2009). An Introduction to Multiagent Systems. Chichester, U.K: Wiley.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 10(2), 115–152.
https://doi.org/10.1017/S0269888900008122

Wu, F., Zilberstein, S., & Chen, X. (2011). Online planning for ad hoc autonomous agent
teams. IJCAI International Joint Conference on Artificial Intelligence, 439–445.
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-081

Ying, C. C. (1967). LEARNING BY DOING-AN ADAPTIVE APPROACH TO
MULTIPERIOD DECISIONS. Operations Research, 15(5), 797–812. Retrieved

www.manaraa.com

from
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=4468934&site=eh
ost-live&scope=site

Zhang, Y., & Parker, L. E. (2012). Task allocation with executable coalitions in
multirobot tasks. In Proceedings - IEEE International Conference on Robotics and
Automation (pp. 3307–3314). https://doi.org/10.1109/ICRA.2012.6224910

	

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	6-2017

	INVESTIGATING AGENT AND TASK OPENNESS IN ADHOC TEAM FORMATION
	Bin Chen

	Microsoft Word - INVESTIGATING AGENT AND TASK OPENNESS IN ADHOC TEAM FORMATION_final.docx

